Skip to main content
Log in

Population identification of Sarcoptes hominis and Sarcoptes canis in China using DNA sequences

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

There has been no consistent conclusion on whether Sarcoptes mites parasitizing in humans and animals are the same species. To identify Sarcoptes (S.) hominis and S. canis in China, gDNA was extracted from individual mites (five from patients with scabies and five from dogs with mange) for amplification of rDNA ITS2, mtDNA 16S, and cox1 fragment sequences. Then, the sequences obtained were aligned with those from different hosts and geographical locations retrieved from GenBank and sequence analyses were conducted. Phylogenetic trees based on 317-bp mtDNA cox1 showed five distinctive branches (species) of Sarcoptes mites, four for S. hominis (S. hominis Chinese, S. nr. hominis Chinese, S. hominis Australian, and S. hominis Panamanian) and one for S. animal (S. animal). S. animal included mites from nine animal species, with S. canis China, S. canis Australia, and S. canis USA clustering as a subbranch. Further sequence divergence analysis revealed no overlap between intraspecific (≤2.6 %) and interspecific (2.6–10.5 %) divergences in 317-bp mtDNA cox1. However, overlap was detected between intra- and interspecific divergences in 311-bp rDNA ITS2 or 275-bp mtDNA 16S when the divergences exceeded 1.0 %, which resulted in failure in identification of Sarcoptes. The results showed that the 317-bp mtDNA cox1 could be used as a DNA barcode for molecular identification of Sarcoptes mites. In addition, geographical isolation was observed between S. hominis Chinese, S. hominis Australian, and S. hominis Panamanian, but not between all S. canis. S. canis and the other S. animal belonged to the same species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Samra MT, Ibrahim KE, Aziz MA (1984) Experimental infection of goats with Sarcoptes scabiei var. ovis. Ann Trop Med Parasitol 78:55–61

    PubMed  CAS  Google Scholar 

  • Abu-Samra MT, Ali BH, Musa BE, Ibrahim KE (1985) Experimental infection of the domestic donkey (Equus asinus asinus) with a goat strain of Sarcoptes scabiei, and treatment with ivermectin. Acta Trop 42:217–224

    PubMed  CAS  Google Scholar 

  • Alasaad S, Rossi L, Maione S, Sartore S, Soriguer RC, Pérez JM, Rasero R, Zhu XQ, Soglia D (2008) HotSHOT Plus ThermalSHOCK, a new and efficient technique for preparation of PCR-quality mite genomic DNA. Parasitol Res 103:1455–1457

    Article  PubMed  CAS  Google Scholar 

  • Alasaad S, Soglia D, Spalenza V, Maione S, Soriguer RC, Pereza JM, Rasero R, Ryser Degiorgis MP, Nimmervoll H, Zhu XQ, Rossi L (2009) Is ITS-2 rDNA suitable marker for genetic characterization of Sarcoptes mites from different wild animals in different geographic areas? Vet Parasitol 159:181–185

    Article  PubMed  CAS  Google Scholar 

  • Amer S, Wahab TAE, Metwaly AEN, Ye J, Roellig D, Feng YY, Xiao LH (2014) Preliminary molecular characterizations of Sarcoptes scaibiei (Acari: Sarcoptidae) from farm animals in Egypt. PLoS ONE 9:e94705

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anstead JA, Burd JD, Shufran KA (2002) Mitochondrial DNA sequence divergence among Schizaphis graminum (Hemiptera: Aphididae) clones from cultivated and non-cultivated hosts: haplotype and host associations. Bull Entomol Res 92:17–24

    PubMed  CAS  Google Scholar 

  • Arlian LG, Runyan RA, Estes SA (1984) Cross infestivity of Sarcoptes scabiei. J Am Acad Dermatol 10:979–986

    Article  PubMed  CAS  Google Scholar 

  • Arlian LG, Vyszenski-Moher DL, Pole MJ (1989) Survival of adults and development stages of Sarcoptes scabiei var. canis when off the host. Exp Appl Acarol 6:181–187

    Article  PubMed  CAS  Google Scholar 

  • Berrilli F, D’Amelio S, Rossi L (2002) Ribosomal and mitochondrial DNA sequence variation in Sarcoptes mites from different hosts and geographical regions. Parasitol Res 88:772–777

    Article  PubMed  CAS  Google Scholar 

  • Burger TD, Shao R, Barker SC (2014) Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Mol Phylogenet Evol 76:241–253

    Article  PubMed  Google Scholar 

  • Chakrabarti A, Chatterjec A, Chakrabarti K, Sengupta DN (1981) Human scabies from contact with water buffaloes infested with Sarcoptes scabies var.bubalis. Ann Trop Med Parasitol 75:353–357

    PubMed  CAS  Google Scholar 

  • Chitimia L, Lin RQ, Cosoroaba I, Braila P, Song HQ, Zhu XQ (2009) Molecular characterization of hard and soft ticks from Romania by sequences of the internal transcribed spacers of ribosomal DNA. Parasitol Res 105:907–911

    Article  PubMed  CAS  Google Scholar 

  • Duan HF, Wang L, Wang J (2000) A investigation report of an outbreak of human scabies caused by Sarcoptes scabies from rabbit factory in Harbin. Harbin Med J 20:36–37

    Google Scholar 

  • Gallegos JL, Budnik I, Peña A, Canales M, Concha M, López J (2014) Sarcoptic mange: report of an outbreak in a family and their pet. Rev Chil Infectol 31:47–52

    Article  Google Scholar 

  • Gu XB, Yang GY (2008) A study on the genetic relationship of mites in the genus Sarcoptes (Acari: Sarcoptidae) in China. Int J Acarol 34:183–190

    Article  Google Scholar 

  • Gu XB, Yang GY, Lai SJ, Wang S (2009) Phylogenetic relationship analysis among four Sarcoptes isolates from rabbits and swine in China based on mitochondrial cox1 sequences. Acta Entomol Sin 52:465–472

    CAS  Google Scholar 

  • Gutierrez MAC, Vivero RJ, Velez ID, Porter CH, Uribe S (2014) DNA barcoding for the identification of sand fly species (Diptera, Psychodidae, Phlebotominae) in Colombia. PLoS ONE 9:e85496

    Article  CAS  Google Scholar 

  • Hebert PD, Cywinska A, Ball SL, Dewaard JR (2003) Biological identification through DNA barcodes. Proc Biol Sci 270:313–321

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hebert PD, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663

    Article  CAS  Google Scholar 

  • Hu L, Zhao YE, Cheng J, Ma JX (2014) Molecular identification of four phenotypes of human Demodex in China. Exp Parasitol 142:38–42

    Article  PubMed  CAS  Google Scholar 

  • Hultgren KM, Hurt C, Anker A (2014) Phylogenetic relationships within the snapping shrimp genus Synalpheus (Decapoda: Alpheidae). Mol Phylogenet Evol 77:116–125

    Article  PubMed  Google Scholar 

  • Li JS, Yu Y, Zhang WD (1999) Diagnosis and treatment for the cross infection of scabies mites between rabbit and human. Chin J Rabbit Farm 04:38

    Google Scholar 

  • Marcilla A, Bargues MD, Ramsey JM, Magallon-Gastelum E, Salazar-Schettino PM, Abad-Franch F, Dujardin JP, Schofield CJ, Mas-Coma S (2001) The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol 18:136–142

    Article  PubMed  CAS  Google Scholar 

  • Matzen da Silva J, Creer S, dos Santos A, Costa AC, Cunha MR, Costa FO, Carvalho GR (2011) Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS ONE 6:e19449

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mo BH, Qu L, Han S, He JW, Zhao M, Zeng XM (2008) DNA barcoding IdentificationI. Research progress and applied perspective of DNA barcoding. Sichuan J Zool 27:303–306

    Google Scholar 

  • Nayel NM, Abu-Samra MT (1986) Experimental infection of the one-humped camel (Camelus dromedarius) with Sarcoptes scabiei var. cameli and S. scabiei var. ovis. Ann Trop Med Parasitol 80:553–561

    PubMed  CAS  Google Scholar 

  • Park D-S, Foottit R, Maw E, Hebert PDN (2011) Barcoding bugs: DNA-based identification of the true bugs (Insecta: Hemiptera: Heteroptera). PLoS ONE 6:e18749

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schaffer S, Koblmuller S, Pfingstl T, Sturmbauer C, Krisper G (2010) Contrasting mitochondrial DNA diversity estimates in Austrian Scutovertex minutus and S. sculptus (Acari, Oribatida, Brachypylina, Scutoverticidae). Pedobiologia 53:203–211

    Article  CAS  Google Scholar 

  • Skerratt L, Campbell N, Murrell A, Walton S, Kemp D, Barker SC (2002) The mitochondrial 12S gene is a suitable marker of populations of Sarcoptes scabiei from wombats, dogs and humans in Australia. Parasitol Res 88:376–379

    Article  PubMed  CAS  Google Scholar 

  • Walton SF, Currie BJ, Kemp DJ (1997) A DNA fingerprinting system for the ectoparasite Sarcoptes scabiei. Mol Biochem Parasitol 85:187–196

    Article  PubMed  CAS  Google Scholar 

  • Walton SF, McBroom J, Mathews JD, Kemp DJ, Currie BJ (1999) Crusted scabies: a molecular analysis of Sarcoptes scabiei variety hominis population from patients with repeated infestations. Clin Infect Dis 29:1226–1230

    Article  PubMed  CAS  Google Scholar 

  • Walton SF, Dougall A, Pizzutto S, Holt D, Taplin D, Arlian LG, Morgan M, Currie BJ, Kempd DJ (2004) Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int J Parasitol 34:839–849

    Article  PubMed  CAS  Google Scholar 

  • Zahler M, Essig A, Gothe R, Rinder H (1999) Molecular analyses suggest monospecificity of the genus Sarcoptes(Acari: Sarcoptidae). Int J Parasitol 29:759–766

    Article  PubMed  CAS  Google Scholar 

  • Zhao YE, Wu LP (2012) Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences. Parasitol Res 111:1113–1121

    Article  PubMed  Google Scholar 

  • Zhao YE, Xu JR, Li H, Wu LP, Wang ZH (2012) Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae). Exp Parasitol 131:45–51

    Article  PubMed  CAS  Google Scholar 

  • Zhao YE, Wang ZH, Xu Y, Wu LP, Hu L (2013a) Secondary structure prediction for complete rDNA sequences (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, and comparison of divergent domains structures across Acari. Exp Parasitol 135:370–381

    Article  PubMed  CAS  Google Scholar 

  • Zhao YE, Hu L, Ma JX (2013b) Molecular identification of four phenotypes of human Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA. Parasitol Res 112:3703–3711

    Article  PubMed  Google Scholar 

  • Zhao YE, Cheng J, Hu L, Ma JX (2014) Molecular identif ication and phylogenetic study of Demodex caprae. Parasitol Res 113:3601–3608

    Article  PubMed  Google Scholar 

  • Zhou BZ (1992) 22 cases reports of human scabie caused by Sarcoptes scabies var.cat. J Dermatol Venereol 14:21–22

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81271856; No. 81471972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaE Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOC 91 kb)

Online Resource 2

Traditional rectangular NJ phylogenetic trees of Sarcoptes mites. a rDNA ITS2, b mtDNA 16S, and c mtDNA cox1 (GIF 94 kb)

High resolution (TIFF 67618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Cao, Z., Cheng, J. et al. Population identification of Sarcoptes hominis and Sarcoptes canis in China using DNA sequences. Parasitol Res 114, 1001–1010 (2015). https://doi.org/10.1007/s00436-014-4266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4266-1

Keywords

Navigation