Skip to main content
Log in

Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N,N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA–Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA–Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus (S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli (E. coli) by the disc diffusion susceptibility test. The HA–Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad Z, Pandey R, Sharma S, Khuller GK (2005) Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Ind J Chest Dis Allied Sci 48:171–176

    Google Scholar 

  • Ando Y, Miyamoto H, Noda I, Sakurai N, Akiyama T, Yonekura Y, Shimazaki T, Miyazaki M, Mawatari M, Hotokebuchi T (2009) Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion. Mater Sci Eng C 30:175–180

    Article  Google Scholar 

  • Barakat NAM, Khalil KA, Sheikh FA, Omran AM, Gaihre B, Khil MS, Kim HY (2008a) Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable HAp. Mater Sci Eng C 28:1381–1387

    Article  CAS  Google Scholar 

  • Barakat NM, Woo KD, Kanjwal MA, Choi KE, Khil MS, Kim HY (2008b) Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique. Langmuir 24:11982–11987

    Article  CAS  Google Scholar 

  • Barakat NAM, Khil MS, Omran AM, Sheik FA, Kim HY (2009) Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Proc Technol 209:3408–3415

    Article  CAS  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27:2331–2339

    Article  CAS  Google Scholar 

  • Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C (2008) Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci Mater Med 19:3603–3609

    Article  CAS  Google Scholar 

  • Diaz M, Barba F, Miranda M, Guitian F, Torrecillas R, Moya JS (2009) Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. J Nanomater doi:10.1155/2009/498505

  • Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in vibrio cholera. Antimicrob Agents Chemother 46:2668–2670

    Article  CAS  Google Scholar 

  • Dragieva I, Stoeva S, Stoimenov P, Pavlikianov E, Klabunde K (1999) Complex formation in solutions for chemical synthesis of nanoscaled particles prepared by borohydride reduction process. Nanostruct Mater 12:267–270

    Article  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604–285611

    Article  Google Scholar 

  • Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  • Ibarra HO, Casillas N, Soto V, Soto MB, Vitela RT, Cruz W, Saazar SG (2007) Surface characterization of electrodeposited silver on activated carbon for bactericidal purposes. J Colloid Interface Sci 314:562–571

    Article  Google Scholar 

  • Ishikawa K, Ducheyne P, Radin S (1993) Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J Mater Sci Mater Med 4:165–168

    Article  CAS  Google Scholar 

  • Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair Regen 12:288–294

    Article  Google Scholar 

  • Joosten U, Joist A, Gosheger G, Liljenqvist U, Brandt B, Eiff CV (2005) Effectiveness of hydroxyapatite–vancomycin bone cement in the treatment of staphylococcus aureus induced chronic osteomyelitis. Biomaterials 26:5251–5258

    Article  CAS  Google Scholar 

  • Jung BO, Lee YM, Kim JJ, Choi YJ, Jung KJ, Chung SJ (1999) The antimicrobial effect of water soluble chitosan. J. Korean Ind Eng Chem 10:660–665

    CAS  Google Scholar 

  • Kang HY, Jung MJ, Jeong YK (2000) Antibacterial activity and the stability of an Ag+ solution made using metallic silver. Korean J Biotechnol Bioeng 15:521–524

    Google Scholar 

  • Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FA (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134

    Article  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JS, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Magana SM, Quintana P, Aguilar DH, Toledo JA, Chavez CA, Cortes MA, Leon L, Pelegrin YF, Lopez T, Sanchez RMT (2008) Antibacterial activity of montmorillonites modified with silver. J Mol Catal A 281:192–199

    Article  CAS  Google Scholar 

  • Mastro MA, Hardy AW, Boasso A, Shearer GM, Eddy CR, Kub FJ (2009) Non-toxic inhibition of HIV-1 replication with silver-copper nanoparticles. Med Chem Res doi:10.1007/s00044-009-9253-1

  • Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Comm 390:733–737

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Ramirez JT (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Nomura K, Fujii S, Ohki Y, Awazu K, Fujimaki M, Tominaga J, Fukuda N, Hirakawa T, Rockstuhl C (2008) Fabrication of inert silver nanoparticles with a thin silica coating. Jpn J Appl Phys 47:8641–8643

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  • Rameshbabu N, Sampath Kumar TS, Prabhakar TG, Sastry VS, Murty KVGK, Prasad Rao K (2007) Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. J Biomed Mater Res A 80:581–591

    CAS  Google Scholar 

  • Regi MV (2001) Ceramics for medical applications. J Chem Soc Dalton Trans 4:97–108

    Article  Google Scholar 

  • Samuel L, Turek MD, Lippincott JB (1985) Orthopaedics: principles and applications, 2nd edn. J. B. Lippincott, Philadelphia, pp 113–136

    Google Scholar 

  • Sanosh KP, Chu MC, Balakrishnan A, Lee YJ, Kim TN, Cho SJ (2009) Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys 9:1459–1462

    Article  Google Scholar 

  • Santos IP, Marza LML (2002) Synthesis of silver nanoprisms in DMF. Nano Lett 2:903–905

    Article  Google Scholar 

  • Schabes PSR, Canizal G, Herrera RB, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29:95–99

    Article  Google Scholar 

  • Shen Z, Adolfsson E, Nygren M, Gao L, Kawaoka H, Niihara K (2001) Dense hydroxyapatite-zirconia ceramic composites with high strength for biological applications. Adv Mater 13:214–216

    Article  CAS  Google Scholar 

  • Shirkhanzadeh M, Azadegan M, Liu GQ (1995) Bioactive delivery systems for the slow release of antibiotics: incorporation of Ag+ ions into micro-porous hydroxyapatite coatings. Mater Lett 24:7–12

    Article  CAS  Google Scholar 

  • Sobhana SSL, Sundaraseelan J, Sekar S, Sastry TP, Mandal AB (2009) Gelatin-chitosan composite capped gold nanoparticles: a matrix for the growth of hydroxyapatite. J Nanopart Res 11:333–340

    Article  CAS  Google Scholar 

  • Sondi I, Sondi BS (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Tang X, Chen J, Li Y, Li Y, Xu Y, Shen W (2006) Complete oxidation of formaldehyde over Ag/MnOx–CeO2 catalysts. Chem Eng J 118:119–125

    CAS  Google Scholar 

  • Thian ES, Huang J, Vickers ME, Best SM, Barber ZH, Bonfield W (2006) Silicon-substituted hydroxyapatite (Si-HA): a novel calcium phosphate coating for biomedical applications. J Mater Sci 41:709–717

    Article  CAS  Google Scholar 

  • Tortora GJ, Funke BR, Case CL (1998) Microbiology an introduction, 6th edn. Benjamin/Cummings Publishing Company, California, pp 84–98

    Google Scholar 

  • Wu Y, Jia W, An Q, Liu Y, Chen J, Li G (2009) Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology 20:245101–245108

    Article  Google Scholar 

  • Yen HJ, Hsu SH, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561

    Article  CAS  Google Scholar 

  • Yeo SG, Ahn CH, Kim IS, Park YB, Park YH, Kim SB (1981) Antimicrobial effect of tea extracts from green tea, oolong tea and black tea. J Korean Soc Food Nutr 24:293–298

    Google Scholar 

  • Zhang C, Yang J, Quan Z, Yang P, Li C, Hou Z, Lin J (2009) Hydroxyapatite nano- and microcrystal with multiform morphologies: controllable synthesis and luminescence properties. Cryst Growth Des 9:2725–2733

    Article  CAS  Google Scholar 

  • Zhao K, Feng Q, Chen G (1999) Antimicrobial effects of silver loaded hydroxyapatite. Tsinghua Sci Technol 4:1570–1576

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korean Research Foundation Grant Funded by Korea Government (MOEHRD; KRF–2005-210-D00042) and Regional Research Centers Programs of the Korean Ministry of Education and Human Resource Development through the Center for Healthcare Technology Development. One of the authors RN sincerely acknowledges the help provided by Dr. Atul A. Chaudhri, and Ms. In Hee, College of Veterinary Medicine, Chonbuk National University and Dr. Nasser A. M. Barakat, Chemical Engineering Department, El-Minia University, Egypt for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nirmala, R., Sheikh, F.A., Kanjwal, M.A. et al. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications. J Nanopart Res 13, 1917–1927 (2011). https://doi.org/10.1007/s11051-010-9944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9944-z

Keywords

Navigation