Skip to main content

A Distributed Model of Spatial Visual Attention

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3575))

Abstract

Although biomimetic autonomous robotics relies on the massively parallel architecture of the brain, the key issue is to temporally organize behaviour. The distributed representation of the sensory information has to be coherently processed to generate relevant actions. In the visual domain, we propose here a model of visual exploration of a scene by the means of localized computations in neural populations whose architecture allows the emergence of a coherent behaviour of sequential scanning of salient stimuli. It has been implemented on a real robotic platform exploring a moving and noisy scene including several identical targets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Treisman, A., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12, 97–136 (1980)

    Article  Google Scholar 

  2. Ungerleider, L.G., Mishkin, M.: Two cortical visual systems. In: Ingle, D.J., Goodale, M.A., Mansfield, R.J.W. (eds.) Analysis of Visual Behavior, pp. 549–586. The MIT Press, Cambridge (1982)

    Google Scholar 

  3. Rougier, N.: Modéles de mémoires pour la navigation autonome. PhD thesis, Université Henri Poincaré Nancy-I (2000)

    Google Scholar 

  4. Reynolds, J.H., Desimone, R.: The role of neural mechanisms of attention in solving the binding problem. Neuron. 14, 19–29 (1999)

    Article  Google Scholar 

  5. Posner, M.I.: Orienting of attention. Quarterly Journal of Experimental Psychology 32, 3–25 (1980)

    Article  Google Scholar 

  6. Treisman, A.: Features and objects: The bartlett memorial lecture. The Quarterly Journal of Experimental Psychology 40, 201–237 (1988)

    Google Scholar 

  7. Moran, J., Desimone, R.: Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985)

    Article  Google Scholar 

  8. Desimone, R.: Visual attention mediated by biased competition in extrastraite visual cortex. Philosophical Transactions of the Royal Society London 353, 1245–1255 (1998)

    Article  Google Scholar 

  9. Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R.: Neural mechanisms of spatial attention in areas v1, v2 and v4 of macaque visual cortex. Journal of Neurophysiology 77, 24–42 (1997)

    Google Scholar 

  10. Posner, M.I., Petersen, S.E.: The attentional system of the human brain. Annual Review of Neurosciences 13, 25–42 (1990)

    Article  Google Scholar 

  11. Rizzolatti, G., Riggio, L., Dascola, I., Ulmita, C.: Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychlogia 25, 31–40 (1987)

    Article  Google Scholar 

  12. Rizzolatti, G., Riggio, L., Sheliga, B.M.: Space and selective attention. In: Ulmitá, C., Moscovitch, M. (eds.) Attention and Performance, vol. XV, pp. 231–265. MIT Press, Cambridge (1994)

    Google Scholar 

  13. Sheliga, B.M., Riggio, L., Craighero, L., Rizzolatti, G.: Spatial attention-determined modifications in saccade trajectories. Neuroreport 6(3), 585–588 (1995)

    Article  Google Scholar 

  14. Nobre, A.C., Gitelman, D.R., Dias, E.C., Mesulam, M.M.: Covert visual spatial orienting and saccades: overlapping neural systems. NeuroImage 11, 210–206 (2000)

    Google Scholar 

  15. Craighero, L., Nascimben, M., Fadiga, L.: Eye position affects orienting of visuospatial attention. Current Biology 14, 331–333 (2004)

    Google Scholar 

  16. Moore, T., Fallah, M.: Control of eye movements and spatial attention. Proceedings of the National Academy of Sciences 98(3), 1273–1276 (2001)

    Article  Google Scholar 

  17. Colby, C.L., Duhamel, J.R., Goldberg, M.E.: Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. Journal of Neurophysiology 76, 2841–2852 (1996)

    Google Scholar 

  18. Posner, M.I., Cohen, Y.: Components of visual orienting. In: Bouma, H., Bouwhuis, D. (eds.) Attention and Performance, vol. X, pp. 531–556. Erlbaum, Mahwah (1984)

    Google Scholar 

  19. DeFockert, J.W., Rees, G., Frith, C.D., Lavie, N.: The role of working memory in visual selective attention. Science 291, 1803–1806 (2001)

    Article  Google Scholar 

  20. Courtney, S.M., Petit, L., Maisog, J.M., Ungerleider, L.G., Haxby, J.V.: An area specialized for spatial working memory in human frontal cortex. Science 279, 1347–1351 (1998)

    Article  Google Scholar 

  21. Frezza-Buet, H., Rougier, N., Alexandre, F.: Integration of Biologically Inspired Temporal Mechanisms into a Cortical Framework for Sequence Processing. In: Neural, Symbolic and Reinforcement Methods for Sequence Learning. Springer, Heidelberg (2000)

    Google Scholar 

  22. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetic 13, 55–80 (1973)

    Article  Google Scholar 

  23. Feldman, J., Cowan, J.D.: Large-scale activity in neural nets. i. theory with applications to motoneuron pool responses. Biological Cybernetics 17, 29–38 (1975)

    Article  MATH  Google Scholar 

  24. Amari, S.-I.: Dynamical study of formation of cortical maps. Biological Cybernetics 27, 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Taylor, J.G.: Neural bubble dynamics in two dimensions: foundations. Biological Cybernetics 80, 5167–5174 (1999)

    Article  Google Scholar 

  26. Douglas, R.J., Koch, C., Mahowald, M., Martin, K.A., Suarez, H.H.: Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995)

    Article  Google Scholar 

  27. Deneve, S., Latham, P., Pouget, A.: Reading populatiopn codes: a neural implementation of ideal observers. Nature Neuroscience 2, 740–745 (1999)

    Article  Google Scholar 

  28. Zhang, K.: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. Journal of Neuroscience 16, 2112–2126 (1996)

    Google Scholar 

  29. Deneve, S., Latham, P.E., Pouget, A.: Efficient computation and cue integration with noisy population codes. Nature Neuroscience 4(8), 826–831 (2001)

    Article  Google Scholar 

  30. Stringer, S.M., Rolls, E.T., Trappenberg, T.P.: Self-organising continuous attractor networks with multiple activity packets, and the representation of space. Neural Networks 17, 5–27 (2004)

    Article  MATH  Google Scholar 

  31. Rougier, N., Vitay, J.: Emergence of attention within a neural population (2004) (submitted)

    Google Scholar 

  32. Tipper, S.P., Brehaut, J.C., Driver, J.: Selection of moving and static objects for the control of spatially directed action. Journal of Experimental Psychology: Human Perception and Performance 16, 492–504 (1990)

    Article  Google Scholar 

  33. Itti, L.: Visual attention. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn., pp. 1196–1201. MIT Press, Cambridge (2003)

    Google Scholar 

  34. Gottlieb, J.P., Kusunoki, M., Goldberg, M.E.: The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998)

    Article  Google Scholar 

  35. Hikosaka, O., Takikawa, Y., Kawagoe, R.: Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews 80(3), 953–978 (2000)

    Google Scholar 

  36. Elshaw, M., Wermter, S., Weber, C., Panchev, C., Erwin, H., Schmidle, W.: Mirrorbot scenario and grammar. Technical Report 2, Mirrorbot (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vitay, J., Rougier, N.P., Alexandre, F. (2005). A Distributed Model of Spatial Visual Attention. In: Wermter, S., Palm, G., Elshaw, M. (eds) Biomimetic Neural Learning for Intelligent Robots. Lecture Notes in Computer Science(), vol 3575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11521082_4

Download citation

  • DOI: https://doi.org/10.1007/11521082_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27440-7

  • Online ISBN: 978-3-540-31896-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics