Skip to main content

High-Level Production of Recombinant Eukaryotic Proteins from Mammalian Cells Using Lentivirus

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2305))

Abstract

Mammalian protein expression systems are ideally suited for the high-level production of recombinant eukaryotic secreted and membrane proteins for structural biology applications. Here, we present genetic transduction of HEK293-derived cells using lentivirus as a robust and cost-efficient method for the rapid generation of stable expression cell lines. We describe the features of the lentiviral transfer plasmid pHR-CMV-TetO2, as well as detailed protocols for production of lentiviral particles, determination of functional lentiviral titer, infection of expression cells, culture and expansion of the resulting stable cell lines, their adaptation to adherent and suspension growth, and constitutive or inducible milligram-scale protein production. The typical lead-time for a full production run is ~3–4 weeks, with an anticipated yield of up to tens of milligrams of protein per liter of expression medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin YC, Boone M, Meuris L et al (2014) Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun 5:4767

    Article  CAS  Google Scholar 

  2. Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62:1243–1250

    Article  Google Scholar 

  3. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9

    Article  Google Scholar 

  4. Chaudhary S, Pak JE, Gruswitz F et al (2012) Overexpressing human membrane proteins in stably transfected and clonal human embryonic kidney 293S cells. Nat Protoc 7:453–466

    Article  CAS  Google Scholar 

  5. Goehring A, Lee CH, Wang KH et al (2014) Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat Protoc 9(11):2574–2585

    Article  CAS  Google Scholar 

  6. Dukkipati A, Park HH, Waghray D et al (2008) BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr Purif 62:160–170

    Article  CAS  Google Scholar 

  7. Elegheert J, Behiels E, Bishop B et al (2018) Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat Protoc 13:2991–3017

    Article  CAS  Google Scholar 

  8. Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  Google Scholar 

  9. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    Article  CAS  Google Scholar 

  10. DuBridge RB, Tang P, Hsia HC et al (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7:379–387

    Article  CAS  Google Scholar 

  11. Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99:13419–13424

    Article  CAS  Google Scholar 

  12. Reeves PJ, Kim JM, Khorana HG (2002) Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc Natl Acad Sci U S A 99:13413–13418

    Article  CAS  Google Scholar 

  13. Finkelshtein D, Werman A, Novick D et al (2013) LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci U S A 110:7306–7311

    Article  CAS  Google Scholar 

  14. Yao F, Svensjo T, Winkler T et al (1998) Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum Gene Ther 9:1939–1950

    Article  CAS  Google Scholar 

  15. Zufferey R, Nagy D, Mandel RJ et al (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  CAS  Google Scholar 

  16. Zufferey R, Dull T, Mandel RJ et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880

    Article  CAS  Google Scholar 

  17. Marcucci KT, Jadlowsky JK, Hwang WT et al (2018) Retroviral and lentiviral safety analysis of gene-modified T cell products and infused HIV and oncology patients. Mol Ther 26(1):269–279

    Article  CAS  Google Scholar 

  18. Montini E, Cesana D, Schmidt M et al (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119(4):964–975

    Article  CAS  Google Scholar 

  19. Backliwal G, Hildinger M, Kuettel I et al (2008) Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101:182–189

    Article  CAS  Google Scholar 

  20. Al-Allaf FA, Tolmachov OE, Zambetti LP et al (2013) Remarkable stability of an instability-prone lentiviral vector plasmid in Escherichia coli Stbl3. Biotech 3:61–70

    Google Scholar 

  21. Davis HE, Rosinski M, Morgan JR, Yarmush ML (2004) Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J 86:1234–1242

    Article  CAS  Google Scholar 

  22. Kumar M, Keller B, Makalou N, Sutton RE (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 12:1893–1905

    Article  CAS  Google Scholar 

  23. Ellis EL, Delbruck M (1939) The growth of bacteriophage. J Gen Physiol 22:365–384

    Article  CAS  Google Scholar 

  24. Seiradake E, Zhao Y, Lu W, Aricescu AR, Jones EY (2015) Production of cell surface and secreted glycoproteins in mammalian cells. Methods Mol Biol 1261:115–127

    Article  CAS  Google Scholar 

  25. Chang VT, Crispin M, Aricescu AR et al (2007) Glycoprotein structural genomics: solving the glycosylation problem. Structure 15:267–273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Elegheert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Behiels, E., Elegheert, J. (2021). High-Level Production of Recombinant Eukaryotic Proteins from Mammalian Cells Using Lentivirus. In: Owens, R.J. (eds) Structural Proteomics. Methods in Molecular Biology, vol 2305. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1406-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1406-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1405-1

  • Online ISBN: 978-1-0716-1406-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics