Skip to main content

Testing Novel Inactivation Methods and Adjuvants for Vaccines Against Streptococcus agalactiae in Nile Tilapia Oreochromis niloticus

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2411))

Abstract

Inactivation by hydrogen peroxide and pH manipulation are two novel methods used recently in experimental vaccines against Streptococcus agalactiae in Nile tilapia. Here we describe in detail inactivation using novel methods as well as the classical method of inactivation. These vaccines showed similar moderate efficacy when compared to the conventional formaldehyde vaccine. In addition, we describe the inclusion of adjuvants in a hydrogen peroxide vaccine.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ye X, Li J, Lu M, Deng G, Jiang X, Tian Y, Quan Y, Jian Q (2011) Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China. Fish Sci 77:623–632. https://doi.org/10.1007/s12562-011-0365-4

    Article  CAS  Google Scholar 

  2. Lusiastuti A, Textor M, Seeger H, Akineden O, Zschock M (2014) The occurrence of Streptococcus agalactiae sequence type 261 from fish disease outbreaks of tilapia Oreochromis niloticus in Indonesia. Aquac Res 45:1260–1263. https://doi.org/10.1111/are.12069

    Article  Google Scholar 

  3. Mishra A, Nam GH, Gim JA, Lee HE, Jo A, Kim HS (2018) Current challenges of streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Mol Cells 41:495–505. https://doi.org/10.14348/molcells.2018.2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barony GM, Tavares GC, Pereira FL, Carvalho AF, Dorella FA, Leal CA et al (2017) Large-scale genomic analyses reveal the population structure and evolutionary trends of Streptococcus agalactiae strains in Brazilian fish farms. Sci Rep 7(1):13538. https://doi.org/10.1038/s41598-017-13228-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu G, Zhu J, Chen K, Gao T, Yao H, Liu Y et al (2016) Development of Streptococcus agalactiae vaccines for tilapia. Dis Aquat Org 122(2):163–170. https://doi.org/10.3354/dao03084

    Article  Google Scholar 

  6. Munang’andu HM, Mutoloki S, Evensen Ø (2014) Non-replicating vaccines. In: Gudding R, Lillehaug A, Evensen Ø (eds) Fish vaccination. Wiley Blackwell, UK

    Google Scholar 

  7. Pasnik DJ, Evans JJ, Panangala VS, Klesius PH, Shelby RA, Shoemaker CA (2005) Antigenicity of Streptococcus agalactiae extracellular products and vaccine efficacy. J Fish Dis 28:205–212. https://doi.org/10.1111/j.1365-2761.2005.00619.x

    Article  CAS  PubMed  Google Scholar 

  8. Pretto-giordano LG, Muller EE, Klesius P, Silva VG (2010) Efficacy of an experimentally inactivated Streptococcus agalactiae vaccine in Nile tilapia (Oreochromis niloticus) reared in Brazil. Aqua Res 41:1539–1544. https://doi.org/10.1111/j.1365-2109.2009.02449.x

    Article  CAS  Google Scholar 

  9. Chen M, Wang R, Li L, Liang W, Li J, Huang Y, Lei A, Huang W, Gan X (2012) Screening vaccine candidate strains against Streptococcus agalactiae of tilapia based on PFGE genotype. Vaccine 30:6088–6092. https://doi.org/10.1016/j.vaccine.2012.07.044

    Article  CAS  PubMed  Google Scholar 

  10. Tu FP, Chu WH, Zhuang XY, Lu CP (2010) Effect of oral immunization with Aeromonas hydrophila ghosts on protection against experimental fish infection. Lett Appl Microbiol 50:13–17. https://doi.org/10.1111/j.1472-765X.2009.02746.x

    Article  CAS  PubMed  Google Scholar 

  11. Amanna IJ, Raué H, Slifka MK (2012) Development of a new hydrogen-peroxide-based vaccine platform. Nat Med 18:974–980. https://doi.org/10.1038/nm.2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan Y, Mu Y, Lu L, Tian Y, Yuan F, Zhou B, Yu C, Wang Z, Li X, Lei S, Xu Y, Wu D, Yang L (2019) Hydrogen peroxide-inactivated bacteria induces potent humoral and cellular immune responses and releases nucleic acids. Int Immunopharmacol 69:389–307. https://doi.org/10.1016/j.intimp.2019.01.055

    Article  CAS  PubMed  Google Scholar 

  13. Pinto AK, Richner JM, Poore EA, Patil PP, Amanna IJ, Slifka MK et al (2013) A hydrogen peroxide-inactivated virus vaccine elicits humoral and cellular immunity and protects against lethal West Nile virus infection in aged mice. J Virol 87(4):1926–1936. https://doi.org/10.1128/JVI.02903-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poore EA, Slifka DK, Raué HP, Thomas A, Hammarlund E, Quintel BK et al (2017) Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine 35(2):283–292. https://doi.org/10.1016/j.vaccine.2016.11.080

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen TD, Crosbie PBB, Nowak BF, Bridle AR (2018) The effects of inactivation methods of Yersinia ruckeri on the efficacy of single dip vaccination in Atlantic salmon (Salmo salar). J Fish Dis 41:1173–1176. https://doi.org/10.1111/jfd.1280

    Article  CAS  PubMed  Google Scholar 

  16. Ramos-Espinoza FC, Cueva-Quiroz VC, Yunis-Aguinaga J, Moraes JRE (2020) A comparison of novel inactivation methods for production of a vaccine against Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. Aquaculture 528:735484. https://doi.org/10.1016/j.aquaculture.2020.735484

    Article  CAS  Google Scholar 

  17. Ramos-Espinoza FC, Cueva-Quiroz VC, Yunis-Aguinaga J, Alvarez-Rubio NC, Mello NP, JRE M (2020) Efficacy of two adjuvants administrated with a novel hydrogen peroxide-inactivated vaccine against Streptococcus agalactiae in Nile tilapia fingerlings. Fish Shellfish Immunol 105:350–358. https://doi.org/10.1016/j.fsi.2020.07.051

    Article  CAS  PubMed  Google Scholar 

  18. Marcusso PF, Eto SF, Claudiano GS, Vieira FCF, Salvador R, Moraes JRE et al (2015) Isolamento de Streptococcus agalactiae em diferentes órgãos de tilápias do nilo (Oreochromis niloticus) criadas em tanques-rede. Biosci J 31(2):549–554. https://doi.org/10.14393/BJ-v31n2a2015-22504

    Article  Google Scholar 

  19. Salvador R, Muller E, Freitas J, Leonhadt J, Pretto-giordano L, Dias J (2005) Isolamento e caracterização de Streptococcus spp. do grupo B em tilápias do Nilo (Oreochromis niloticus) criadas em tanques rede e em viveiros de terra na região norte do Estado do Paraná, Brasil. Cienc Rural 35:1374–1378. https://doi.org/10.1590/S0103-84782005000600023

    Article  Google Scholar 

  20. Delannoy C, Crumlish M, Fontaine M, Pollock J, Foster G, Dagleish M, Turnbull J, Zadoks R (2013) Human Streptococcus agalactiae strains in aquatic mammals and fish. BMC Microbiol 13:1–9. https://doi.org/10.1186/1471-2180-13-41

    Article  CAS  Google Scholar 

  21. Amend DF (1981) Potency testing of fish vaccines. Fish Biol 49:447–454

    Google Scholar 

Download references

Acknowledgments

This work was supported by the São Paulo Research Foundation (Fapesp)—Grant 2018/06137-1 and 2019/02339-1 and Scholarship 2016/18345-2, and the National Council for Scientific and Technological Development (CNPq)—Scholarship 141835/2018-4. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Carlos Ramos-Espinoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramos-Espinoza, F.C., Cueva-Quiroz, V.A., Yunis-Aguinaga, J., Alvarez-Rubio, N.C., de Mello, N.P., de Moraes, J.R.E. (2022). Testing Novel Inactivation Methods and Adjuvants for Vaccines Against Streptococcus agalactiae in Nile Tilapia Oreochromis niloticus. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2411. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1888-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1888-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1887-5

  • Online ISBN: 978-1-0716-1888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics