Skip to main content

Citrus Rootstocks for Improving the Horticultural Performance and Physiological Responses Under Constraining Environments

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

Due to fruit nutritional value and economical importance, citrus species are grown and cultivated around the World, with large plantations being found under subtropical, tropical, and Mediterranean climates. In such areas, citrus trees are subjected to constraining environmental conditions that impair plant development and crop yield, reducing fruit yield and causing economical losses. Such scenario is more severe in developing countries, where the environmental risk to crop production is larger as the technological packages are not always available. As field-grown citrus tree is commonly a scion-rootstock combination, the choice of citrus rootstock is a strategy for increasing scion resistance to unfavorable conditions and then reducing crop losses. Among environmental constraints, citrus trees are severely affected by water deficit, flooding, salinity, chilling, and heat stress when considering the various citrus-growing regions worldwide. This chapter has as aim to reveal the horticultural benefits due to the use of citrus rootstocks for alleviating the deleterious consequences of abiotic stresses. In addition, the physiological bases of such increased resistance are discussed as well as the future perspectives and research needs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agustí M (2000) Citricultura. Ediciones Mundi-Prensa, Madrid

    Google Scholar 

  • Ahrens MJ, Ingram DL (1988) Heat tolerance of citrus leaves. HortScience 23:747–748

    Google Scholar 

  • Allario T, Brumos J, Colmenero-Flores JM, Iglesias DJ, Pina JA, Navarro L, Talón M, Ollitrault P, Morillon R (2013) Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell Environ 36:856–868

    CAS  PubMed  Google Scholar 

  • Allen LH, Vu JCV (2009) Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agric For Meteorol 149:820–830

    Google Scholar 

  • Almansa MS, Hernandez JA, Jimenez A, Botella MA, Sevilla F (2002) Effect of salt stress on the superoxide dismutase activity in leaves of citrus limonum in different rootstock-scion combinations. Biol Plant 45:545–549

    CAS  Google Scholar 

  • Anjum MA (2008) Effect of NaCl concentrations in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. Acta Physiol Plant 30:43–52

    CAS  Google Scholar 

  • Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250

    CAS  Google Scholar 

  • Arbona V, Flors V, Jacas J, García-Agustin P, Gómez-Cadenas A (2003) Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol 44:388–394

    CAS  PubMed  Google Scholar 

  • Arbona V, Iglesias DJ, Jacas P-ME, Talón M, Gómez-Cadenas A (2005a) Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 270:73–82

    CAS  Google Scholar 

  • Arbona V, Marco AJ, Iglesias DJ, López-Climent MF, Talón M, Gómez-Cadenas A (2005b) Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementine L. Plant Growth Regul 46:153–160

    CAS  Google Scholar 

  • Arbona V, Hossain Z, López-Climent MF, Pérez-Clemente RM, Gómez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132:452–466

    CAS  PubMed  Google Scholar 

  • Ariel-Meloni D, Noelia-David R, Ayrault G, Abdala G (2008) Salinity tolerance in two citrus rootstocks: growth, mineral composition and osmotic adjustment. Rev Fac Cienc Agrár 40:97–104

    Google Scholar 

  • Ashkenazi S, Asor Z, Rasis A, Rosenberg D (1994) Flying Dragon trifoliate as a dwarfing interstock for citrus trees. In: Proceedings of the international citrus congress, Acireale, International Society of Citriculture, 1992, pp 284–285

    Google Scholar 

  • Balal RM, Khan MM, Shahid MA, Mattson NS, Abbas T, Ashfaq M, García-Sánchez F, Ghazanfer U, Gimeno V, Iqbal Z (2012) Comparative studies on the physiobiochemical, enzymatic, and ionic modifications in salt-tolerant and salt-sensitive citrus rootstocks under NaCl stress. J Am Soc Hortic Sci 137:86–95

    CAS  Google Scholar 

  • Bañuls J, Primo-Millo E (1992) Effects of chloride and sodium on gas exchange parameters and water relations of Citrus plants. Physiol Plant 86:115–123

    Google Scholar 

  • Bañuls J, Primo-Millo E (1995) Effects of salinity on some citrus scion-rootstock combinations. Ann Bot 76:97–102

    Google Scholar 

  • Bañuls J, Legaz F, Primo-Millo E (1991) Salinity-calcium interactions on growth and ionic concentration of citrus plants. Plant Soil 133:39–46

    Google Scholar 

  • Bañuls J, Serna MD, Legaz F, Primo-Millo E (1997) Growth and gas exchange parameters of Citrus plants stressed with different salts. J Plant Physiol 150:194–199

    Google Scholar 

  • Bar Y, Apelbaum A, Kafkafi U, Goren R (1998) Ethylene association with chloride stress in citrus plants. Sci Hortic 73:99–109

    CAS  Google Scholar 

  • Bassanezi RB, Bergamin Filho A, Amorim L, Gimenes-Fernandes N, Gottwald TR, Bové JM (2003) Spatial and temporal analyses of citrus sudden death as a tool to generate hypotheses concerning its etiology. Phytopathology 93:502–512

    Google Scholar 

  • Behboudian MH, Torokfalvy E, Walker RR (1986) Effects of salinity on ionic content, water relations and gas-exchange parameters in some citrus scion rootstocks combinations. Sci Hortic 28:105–116

    CAS  Google Scholar 

  • Ben-Hayyim G, Kochba J (1983) Aspects of salt tolerance in a NaCl-selected stable cell line of Citrus sinensis. Plant Physiol 72:685–690

    CAS  PubMed  Google Scholar 

  • Bitters WP, Cole DA, McCarty CD (1982) Effect of height and length of reciprocal interstock insertion on yield and tree size of Valencia oranges. In: Proceedings of international citrus congress, Tokio, International Society of Citriculture Tokiya 1981, pp 110–113

    Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    CAS  PubMed  Google Scholar 

  • Boman BJ, Zekri M, Stover E (2005) Managing salinity in citrus. HortTechnology 15:108–113

    Google Scholar 

  • Boscariol-Camargo RL, Berger IJ, Souza AA, Amaral AM, Carlos EF, Freitas-Astúa J, Takita MA, Targon MLPN, Medina CL, Reis MS, Machado MA (2007) In silico analysis of ESTs from roots of Rangpur lime (Citrus limonia Osbeck) under water stress. Gen Mol Biol 30:906–916

    CAS  Google Scholar 

  • Botia P (2008) Response of sweet orange ‘Lane Late’ to deficit-irrigation strategy in two rootstocks: II: Flowering, fruit growth, yield and fruit quality. Irrig Sci 26:519–529

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Brodribb TJ (2009) Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity. Plant Sci 177:245–251

    CAS  Google Scholar 

  • Brumós J, Colmenero-Flores JM, Conessa A, Izquierdo P, Sanchez G, Iglesias DJ, López-Climent MF, Gómez-Cadenas A, Talón M (2009) Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive citrus rootstocks. Funct Integr Genomics 9:293–309

    PubMed  Google Scholar 

  • Brumós J, Talón M, Bouhlal R, Colmenero-Flores JM (2010) Cl- homeostasis in includer and excluder citrus rootstock transport mechanisms and identification of candidate genes. Plant Cell Environ 33:2012–2027

    PubMed  Google Scholar 

  • Bueno ACR, Prudente DA, Machado EC, Ribeiro RV (2012) Daily temperature amplitude affects the vegetative growth and carbon metabolism of orange trees in a rootstock-dependent manner. J Plant Growth Regul 31:309–319

    CAS  Google Scholar 

  • Calzavara SA, Santos JM, Favoreto L (2007) Resistência de porta-enxertos cítricos a Pratylenchus jaehni (Nematoda: Pratylenchidae). Nematol Bras 31:7–11

    Google Scholar 

  • Cámara-Zapata JM, Nieves M, Cerdá A (2003) Improvement of growth and salt resistance of lemon (Citrus limon) trees by an interstock-induced mechanism. Tree Physiol 23:879–888

    PubMed  Google Scholar 

  • Cámara-Zapata JM, Cerdá A, Nieves M (2004) Interstock-induced mechanism of increased growth and salt resistance of orange (Citrus sinensis) trees. Tree Physiol 24:1109–1117

    PubMed  Google Scholar 

  • Camargo MBP, Ortolani AA, Pedro Junior MJ, Rosa SM (1999) Modelo agrometeorológico de estimativa de produtividade para o cultivar de laranja Valência. Bragantia 58:171–178

    Google Scholar 

  • Campos MKFC, Carvalho K, Souza FS, Marur CJ, Pereira LFP, Bespalhok Filho JC, Vieira LGE (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250

    Google Scholar 

  • Cantuarias-Avilés T, Mourão Filho FAA, Stuchi ES, da Silva SR, Espinoza-Núñez E (2011) Horticultural performance of ‘Folha Murcha’ sweet orange onto twelve rootstocks. Sci Hortic 129:259–265

    Google Scholar 

  • Carlos EF (1996) Avaliação de proteínas associadas ao declínio dos citros em plantas interenxertadas. Master’s thesis, Jaboticabal, State University of São Paulo

    Google Scholar 

  • Carr MKV (2012) The water relations and irrigation requirements of citrus (Citrus spp.): a review. Expl Agric 48:347–377

    Google Scholar 

  • Caruso P, Baldoni E, Mattana M, Paolo DP, Genga A, Coraggio I, Russo G, Picchi V, Recupero GR, Locatelli F (2012) Ectopic expression of a rice transcription factor, Mybleu, enhances tolerance of transgenic plants of Carrizo citrange to low oxygen stress. Plant Cell Tissue Organ Cult 109:327–339

    CAS  Google Scholar 

  • Carvalho K, Campos MKF, Domingues DS, Pereira LFP, Vieira LGE (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep. doi:10.1007/s11033-012-2402-5

    Google Scholar 

  • Castle WS (1978) Citrus root systems: their structure, function, growth, and relationship to tree performance. In: Proceedings of the international citrus congress, Sidney, International Society of Citriculture, pp 62–69

    Google Scholar 

  • Castle WS (1987) Citrus rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley, New York, pp 361–399

    Google Scholar 

  • Castle WS (1995) Rootstock as a fruit quality factor in citrus and deciduous tree crops. N Z J Crop Hortic Sci 23:383–394

    Google Scholar 

  • Castle WS (2010) A career perspective on citrus rootstocks, their development, and commercialization. HortScience 45:11–15

    Google Scholar 

  • Castle WS, Krezdorn AH (1973) Rootstock effects on root distribution and leaf mineral content of Orlando tangelo trees. Proc Fla State Hortic Soc 86:81–84

    Google Scholar 

  • Castle WS, Krezdorn AH (1977) Soil water use apparent root efficiencies of citrus trees on four rootstocks. J Am Soc Hortic Sci 102:403–406

    Google Scholar 

  • Castle WS, Youtsey CHO (1977) Root system characteristic of citrus nursery trees. Proc Fla State Hortic Soc 90:39–44

    Google Scholar 

  • Castle WS, Tucker DPH, Krezdorn AH, Youtsey CO (1993) Rootstocks for Florida citrus. University of Florida, Gainesville

    Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L, Pena L (2000) Generation of transgenic citrus plants with the tolerance to salinity gene HAL2 from yeast. J Hortic Sci Biotechnol 75:26–30

    CAS  Google Scholar 

  • Champ KI, Febres VJ, Moore GA (2007) The role of CBF transcriptional activators in two Citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. Physiol Plant 129:529–541

    CAS  Google Scholar 

  • Chapot H (1975) The citrus plant. In: Hafliger E (ed) Citrus. Ciba-Geigy Agrochemicals, Basel, pp 6–13

    Google Scholar 

  • Chatzissavvidis C, Papadakis I, Therios I (2008) Effect of calcium on the ion status and growth performance of a citrus rootstock grown under NaCl stress. Soil Sci Plant Nutr 54:910–915

    CAS  Google Scholar 

  • Cole PJ (1985) Chloride toxicity in citrus. Irrig Sci 6:63–71

    CAS  Google Scholar 

  • Conesa A, Legua P, Navarro JM, Pérez-Tornero O, García-Lidón A, Porras I (2011) Recovery of different Citrus rootstock seedlings previously irrigated with saline waters. J Am Pomol Soc 65:158–166

    Google Scholar 

  • Cramer GR, Läuchli A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells. Plant Physiol 79:207–211

    CAS  PubMed  Google Scholar 

  • Dambier D, Benyahia H, Pensabene-Bellavia G, Kaçar YA, Froelicher Y, Belfalah Z, Lhou B, Handaji N, Printz B, Morillon R, Yesiloglu T, Navarro L, Ollitrault P (2011) Somatic hybridization for citrus rootstock breeding: an effective tool to solve some important issues of the Mediterranean citrus industry. Plant Cell Rep 30:883–900

    CAS  PubMed  Google Scholar 

  • Davies FS, Albrigo LG (1994) Citrus. CAB International, Wallingford

    Google Scholar 

  • Davies FS, Bower J (1994) Water stress, gas exchange and fruit set of ‘Olinda’ Valencia orange trees in eastern Transvaal area of South Africa. Acta Hortic 335:121–127

    Google Scholar 

  • Donadio LC, Stuchi ES (2001) Adensamento de plantio e ananicamento de citros. FUNEP, Jaboticabal

    Google Scholar 

  • Durham RE, Moore GA, Haskell D, Guy CL (1991) Cold-acclimation induced changes in freezing tolerance and translatable RNA content in Citrus grandis and Poncirus trifoliata. Physiol Plant 82:519–522

    CAS  Google Scholar 

  • Eissenstat DM, Achor DS (1999) Anatomical characteristics of roots of citrus rootstocks that vary in specific root length. New Phytol 141:309–321

    Google Scholar 

  • Erismann NM, Machado EC, Tucci MLS (2008) Photosynthetic limitation by CO2 diffusion in drought stressed orange leaves on three rootstocks. Photosynth Res 96:163–172

    Google Scholar 

  • Espinoza-Núñez E, Mourão Filho FAA, Stuchi ES, Cantuarias-Avilés T, Dias CT (2011) Performance of ‘Tahiti’ lime on twelve rootstocks under irrigated and non-irrigated conditions. Sci Hortic 129:227–231

    Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2006) Physiology of crop production. Food Products Press, New York

    Google Scholar 

  • Ferguson L, Grattan SR (2005) How salinity damages citrus: osmotic effects and specific ion toxicities. HortTechnology 15:95–99

    Google Scholar 

  • Fernandez-Ballester G, García-Sánchez F, Cerdá A, Martínez V (2003) Tolerance of citrus rootstock seedlings to saline stress based on their ability to regulate ion uptake and transport. Tree Physiol 23:265–271

    CAS  PubMed  Google Scholar 

  • Feucht W (1988) Graft incompatibility of tree crops: an overview of the present scientific status. Acta Hortic 227:33–41

    Google Scholar 

  • Fidelibus MW, Martin CA, Stutz JC (2001) Geographic isolates of Glomus increase root growth and whole plant transpiration of Citrus seedlings grown with high phosphorus. Mycorrhiza 6:119–127

    Google Scholar 

  • Forner JB, Forner-Giner MA, Alcaide A (2003) Forner-alcaide 5 and Forner-alcaide 13: two new citrus rootstocks released in Spain. HortScience 38:629–630

    Google Scholar 

  • Forner-Giner MA, Primo-Millo E, Forner JB (2009) Performance of Forner-Alcaide 5 and Forner-Alcaide 13, hybrids of Cleopatra mandarin x Poncirus trifoliata, as salinity-tolerant citrus rootstocks. J Am Pomol Soc 63:72–80

    Google Scholar 

  • Forner-Giner MA, Legaz F, Primo-Millo E, Forner J (2011a) Nutritional responses of citrus rootstock to salinity: performance of the new hybrids Forner-Alcaide 5 and Forner-Alcaide 13. J Plant Nutr 34:1437–1452

    CAS  Google Scholar 

  • Forner-Giner MA, Rodríguez-Gamir J, Primo-Millo E, Iglesias DJ (2011b) Hydraulic and chemical responses of citrus seedlings to drought and osmotic stress. J Plant Growth Regul 30:353–366

    CAS  Google Scholar 

  • Fu XZ, Khan EU, Hu SS, Fan QJ, Liu JH (2011) Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic Trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot 74:106–113

    CAS  Google Scholar 

  • García MR, Bernet GP, Puchades J, Gomez I, Carbonell EA, Asins MJ (2002) Reliable and easy screening technique for salt tolerance of citrus rootstocks under controlled environment. Aus J Agric Res 53:653–662

    Google Scholar 

  • García-Legaz MF, Ortiz JM, García-Lidón A, Cerdá A (1993) Effect of salinity on growth, ion content and CO2 assimilation rate in lemon varieties on different rootstocks. Physiol Plant 89:427–432

    Google Scholar 

  • García-Sánchez F, Syvertsen JP (2006) Salinity tolerance of Cleopatra mandarin and Carrizo citrange rootstock seedlings is affected by CO2 enrichment during growth. J Am Soc Hortic Sci 131:24–31

    Google Scholar 

  • García-Sánchez F, Syvertsen JP (2009) Substrate type and salinity affect growth allocation, tissue ion concentrations, and physiological responses of Carrizo citrange seedlings. HortScience 44:1432–1437

    Google Scholar 

  • García-Sánchez F, Carvajal M, Sanchez-Pina MA, Martínez V, Cerdá A (2000) Salinity resistance of Citrus seedlings in relation to hydraulic conductance, plasma membrane ATPase and anatomy of the roots. J Plant Physiol 156:724–730

    Google Scholar 

  • García-Sánchez F, Jifon JL, Carvajal M, Syvertsen JP (2002a) Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl- accumulation in ‘Sunburst’ mandarin grafted on different rootstocks. Plant Sci 162:705–712

    Google Scholar 

  • García-Sánchez F, Martínez V, Jifon J, Syvertsen JP, Grosser JW (2002b) Salinity reduces growth, gas exchange, chlorophyll and nutrient concentrations in diploid sour orange and related allotetraploid somatic hybrids. J Hortic Sci Biotechnol 77:379–386

    Google Scholar 

  • García-Sánchez F, Carvajal M, Porras I, Botía P, Martínez V (2003) Effects of salinity and rate of irrigation on yield, fruit quality and mineral composition of ‘Fino 49’ lemon. Eur J Agron 19:427–437

    Google Scholar 

  • García-Sánchez F, Syvertsen JP, Gimeno V, Botía P, Pérez-Pérez JG (2007) Responses to flooding and drought stress by two citrus rootstocks with different water-use efficiency. Plant Physiol 130:532–542

    Google Scholar 

  • Gardner FE (1969) A study of influence on citrus fruit quality by fruit grafting. In: Proceedings of the international citrus symposium, University of California, Riverside, pp 359–364

    Google Scholar 

  • Gimeno V, Syvertsen JP, Nieves M, Simon I, Martínez V, García-Sánchez F (2009a) Additional nitrogen fertilization affects salt tolerance of lemon trees on different rootstocks. Sci Hortic 121:298–305

    CAS  Google Scholar 

  • Gimeno V, Syvertsen JP, Nieves M, Simon I, Martínez V, García-Sánchez F (2009b) Orange varieties as interstocks increase the salt tolerance of lemon trees. J Hortic Sci Biotechnol 84:625–631

    CAS  Google Scholar 

  • Gimeno V, Syvertsen JP, Rubio F, Martínez V, García-Sánchez F (2010) Growth and mineral nutrition are affected by substrate and salt stress in seedlings of two contrasting citrus rootstocks. J Plant Nutr 33:1435–1447

    CAS  Google Scholar 

  • Gimeno V, Syvertsen JP, Simon I, Martínez V, Camara-Zapata JM, Nieves M, García-Sánchez F (2012) Interstock of ‘Valencia’ orange affects the flooding tolerance in ‘Verna’ lemon trees. HortScience 47:403–409

    CAS  Google Scholar 

  • Ginestar C, Castle JR (1996) Responses of young Clementine citrus trees to water stress during different phenological periods. J Hortic Sci 71:551–559

    Google Scholar 

  • Gomes MMA, Lagôa AMMA, Machado EC, Medina CL (2003) Abscisic acid and indole-3-acetic acid contents in orange trees infected by Xylella fastidiosa and submitted to cycles of water stress. Plant Growth Regul 39:263–270

    CAS  Google Scholar 

  • Gomes MMA, Lagôa AMMA, Camilo CL, Machado EC, Machado MA (2004) Interactions between leaf water potential, stomatal conductance and abscisic acid content of orange trees submitted to drought stress. Braz J Plant Physiol 16:155–161

    Google Scholar 

  • Gómez-Cadenas A, Tadeu FR, Primo-Millo E, Talón M (1998) Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt shock. Physiol Plant 103:475–484

    Google Scholar 

  • Gómez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talón M (2003) Abscisic acid reduces leaf abscision and increases salt tolerance in citrus plants. J Plant Growth Regul 21:234–240

    Google Scholar 

  • Gonzalez P, Syvertsen JP, Exteberria E (2012) Sodium distribution in salt-stressed citrus rootstock seedlings. HortScience 47:1504–1511

    CAS  Google Scholar 

  • Grieve AM, Walker RR (1983) Uptake and distribution of chloride, sodium and potassium ions in salt-treated citrus plants. Aus J Agric Res 34:133–143

    CAS  Google Scholar 

  • Grieve AM, Prior LD, Bevington KB (2007) Long-term effects of saline irrigation water on growth, yield, and fruit quality of Valencia orange trees. Aus J Agric Res 58:342–348

    Google Scholar 

  • Grosser JW, Chandler JL (2003) New citrus rootstocks via protoplast fusion. Acta Hortic 622:491–497

    Google Scholar 

  • Guo YP, Zhou HF, Zhang L (2006) Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci Hortic 108:260–267

    CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    CAS  Google Scholar 

  • Hall AE, Khairi MMA, Asbell CW (1977) Air and soil temperature effects on flowering of citrus. J Am Soc Hortic Sci 102:261–263

    Google Scholar 

  • Hardy S, Barkley P, Creek A, Donovan N (2012) Impacts and management of flooding and waterlogging in citrus orchards. NSW Government, (Primefact 1189). Available at: http://www.industry.nsw.gov.au/publications (Accessed Jan 26, 2012)

  • Hartmond U, Schaesberg NV, Graham JH, Syvertsen JP (1987) Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings. Plant Soil 104:37–43

    Google Scholar 

  • Hepaksoy S, Ozer B, Can HZ, Ul MA, Anac D (2002) Influence of rootstocks on physiological response of Satsuma mandarin (Citrus unshiu Marc.) to salinity. Acta Hortic 573:247–253

    Google Scholar 

  • Hilgeman RH, Sharp FO (1970) Response of ‘Valencia’ orange trees to four soil water schedules during 20 years. J Am Soc Hortic Sci 95:739–745

    Google Scholar 

  • Hodgson RW (1967) Horticultural varieties of citrus. In: Reuther W, Batchelor LD (eds) The citrus industry. University of California Press, Riverside, pp 431–591

    Google Scholar 

  • Hu L-M, Xia R-X, Xiao Z-Y, Huang R-H, Tan M-L, Wang M-Y, Wu Q-S (2007) Reduced leaf photosynthesis at midday in citrus leaves growing under field or greenhouse conditions. J Hortic Sci Biotechnol 82:387–392

    CAS  Google Scholar 

  • Huang GB, Eissenstat DM (2000) Linking hydraulic conductivity to anatomy in plants that vary in specific root length. J Am Soc Hortic Sci 125:260–264

    Google Scholar 

  • Huang Y, Si Y, Dane F (2011) Impact of grafting on cold responsive gene expression in Satsuma mandarin (Citrus unshiu). Euphytica 177:25–32

    CAS  Google Scholar 

  • Hussain S, Luro F, Costantino G, Ollitrault P, Morillon R (2012) Physiological analysis of salt stress behaviour of citrus species and genera: low chloride accumulation as an indicator of salt tolerance. South Afr J Bot 81:103–112

    CAS  Google Scholar 

  • Iglesias DJ, Levy Y, Goméz-Cadenas A, Tadeo FR, Primo-Millo E, Talón M (2004) Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic capacity and chloride accumulation. Tree Physiol 24:1027–1034

    CAS  PubMed  Google Scholar 

  • Ingram DL, Buchanan DW (1984) Lethal high temperatures for roots of three citrus rootstocks. J Am Soc Hortic Sci 109:189–193

    Google Scholar 

  • IPCC (2007) Climate change 2007. The physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jifon JL, Syvertsen JP (2003) Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol 23:119–127

    PubMed  Google Scholar 

  • Jones HG (2012) How do rootstocks control shoot water relations? New Phytol 194:301–303

    PubMed  Google Scholar 

  • Jover S, Martínez-Alcántara B, Rodríguez-Gamir J, Legaz F, Primo-Millo E, Forner J, Forner-Giner MA (2012) Influence of rootstocks on photosynthesis in Navel orange leaves: effects on growth, yield, and carbohydrate distribution. Crop Sci 52:836–848

    CAS  Google Scholar 

  • Karstens GS, Ebert G, Ludders P (1993) Long-term and short-term effects of salinity on root respiration, photosynthesis and transpiration of citrus rootstocks. Angew Bot 67:3–8

    CAS  Google Scholar 

  • Khairi MMA, Hall AE (1976) Effects of air and soil temperatures on vegetative growth of citrus. J Am Soc Hortic Sci 101:337–341

    Google Scholar 

  • Khalil HA, Eissa AM, El-Shazly SM, Nasr AMA (2011) Improved growth of salinity-stressed citrus after inoculation with mycorrhizal fungi. Sci Hortic 130:624–632

    CAS  Google Scholar 

  • Kriedemann PE, Barrs HD (1981) Citrus orchards. In: Kozlowski TT (ed) Water deficit and plant growth. Academic, New York, pp 325–417

    Google Scholar 

  • Lea-Cox JD, Syvertsen JP (1993) Salinity reduces water-use and nitrate-N-use efficiency of citrus. Ann Bot 72:47–54

    CAS  Google Scholar 

  • Levy Y, Shalhevet J (1990) Ranking the salt tolerance of citrus rootstocks by juice analysis. Sci Hortic 45:89–98

    Google Scholar 

  • Levy Y, Lifshitz J, De Malach Y, David Y (1999) The response of several Citrus genotypes to high-salinity irrigation water. HortScience 34:878–881

    Google Scholar 

  • Lloyd J, Syvertsen JP, Kriedemann PE (1987) Salinity effects on leaf water relations and gas-exchange of Valencia orange, Citrus sinensis (L.) Osbeck, on rootstocks with different salt exclusion characteristics. Aus J Plant Physiol 14:605–617

    Google Scholar 

  • Lloyd J, Kriedemann PE, Aspinall D (1989) Comparative sensitivity of Prior Lisbon lemon and Valencia orange trees to foliar sodium and chloride concentrations. Plant Cell Environ 12:529–540

    Google Scholar 

  • Lloyd J, Kriedemann PE, Aspinall D (1990) Contrasts between Citrus species in response to salinisation: an analysis of photosynthesis and water relations for different rootstock-scion combinations. Physiol Plant 78:236–246

    Google Scholar 

  • Long G, Song J, Deng Z, Liu J, Rao L (2012) Ptcorp gene induced by cold stress was identified by proteomic analysis in leaves of Poncirus trifoliata (L.) Raf. Mol Biol Rep 39:5859–5866

    CAS  PubMed  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ Exp Bot 62:176–184

    Google Scholar 

  • Machado EC, Oliveira RF, Ribeiro RV, Medina CL, Stuchi ES, Pavani LC (2007) Deficiência hídrica agrava sintomas fisiológicos da clorose variegada de citros em laranjeira ‘Natal’. Bragantia 66:373–379

    CAS  Google Scholar 

  • Machado DFSP, Machado EC, Machado RS, Ribeiro RV (2010) Efeito da baixa temperatura noturna e do porta-enxerto na variação diurna das trocas gasosas e na atividade fotoquímica de laranjeira ‘Valência’. Rev Bras Frutic 32:351–359

    Google Scholar 

  • Magalhães Filho JR, Amaral LR, Machado DFSPM, Medina CL, Machado EC (2008) Deficiência hídrica, trocas gasosas e crescimento de raízes em laranjeira ‘Valência’ sobre dois tipos de porta-enxertos. Bragantia 67:75–82

    Google Scholar 

  • Mass EV (1993) Salinity and citriculture. Tree Physiol 12:195–216

    Google Scholar 

  • Medina CL, Machado EC (1998) Gas exchange and water relations of Valencia orange tree grafted on rangpur lime and Poncirus trifoliata submitted to a water deficit. Bragantia 57:15–22

    Google Scholar 

  • Medina CL, Machado EC, Pinto JM (1998) Fotossíntese de laranjeira Valência enxertada sobre quatro porta-enxertos e submetidas a deficiência hídrica. Bragantia 57:1–14

    Google Scholar 

  • Medina CL, Machado EC, Assis Gomez MM (1999) Condutância estomática, transpiração e fotossíntese em laranjeira ‘Valência’ sob deficiência hídrica. Rev Bras Fisiol Veg 11:29–34

    Google Scholar 

  • Medina CL, Souza RP, Machado EC, Ribeiro RV, Silva JAB (2002) Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets. Sci Hortic 96:115–125

    Google Scholar 

  • Medina CL, Rena AB, Siqueira DL, Machado EC (2005) Fisiologia dos citros. In: Mattos Junior D, De Negri JD, Pio RM, Pompeu Junior J (eds) Citros. Centro Apta Citros Sylvio Moreira, IAC, Cordeirópolis, pp 147–195

    Google Scholar 

  • Melgar JC, Dunlop JM, Syvertsen JP (2010) Growth and physiological responses of the citrus rootstock Swingle citrumelo seedlings to partial rootzone drying and deficit irrigation. J Agric Sci 148:593–602

    Google Scholar 

  • Meng S, Dane F, Si Y, Ebel R, Zhang C (2008) Gene expression analysis of cold treated versus cold acclimated Poncirus trifoliata. Euphytica 164:209–219

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Molinari HBC, Marur CJ, Bespalhok Filho JC, Kobayashi AK, Pileggi M, Leite Júnior RP, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Obs. x Poncirus trifoliata L. Raf.) over producing proline. Plant Sci 167:1375–1381

    CAS  Google Scholar 

  • Mosse B (1962) Graft incompatibility in fruit trees with particular reference to its underlying causes. Commonwealth Bureau of Horticultural and Plantation Crops, Kent (Technical Communication, 28)

    Google Scholar 

  • Mouhaya W, Allario T, Brumós J, Andres F, Froelicher Y, Luro F, Talón M, Ollitrault P, Morillon R (2010) Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes. Funct Plant Biol 37:674–685

    CAS  Google Scholar 

  • Mourão Filho FAA, Espinoza-Núñez E, Stuchi ES, Ortega EMM (2007) Plant growth, yield, and fruit quality of ‘Fallglo’and ‘Sunburst’mandarins on four rootstocks. Sci Hortic 114:45–49

    Google Scholar 

  • Moya JL, Tadeo FR, Gómez-Cardenas A, Primo-Millo E, Talón M (2002) Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes. J Plant Physiol 159:991–998

    CAS  Google Scholar 

  • Moya JL, Gómez-Cardenas A, Primo-Millo E, Talón M (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J Exp Bot 54:825–833

    CAS  PubMed  Google Scholar 

  • Murkute AA, Sharma S, Singh SK (2005) Citrus in terms of soil and water salinity: a review. J Sci Ind Res 64:393–402

    CAS  Google Scholar 

  • Murkute AA, Sharma S, Singh SK, Patel VB (2009) Response of mycorrhizal citrus rootstock plantlets to salt stress. Ind J Hortic 66:456–460

    Google Scholar 

  • Nardini A, Salleo S, Jansen S (2011) More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. J Exp Bot 62:4701–4718

    CAS  PubMed  Google Scholar 

  • Nesbitt ML, Ebel RC, Findley D, Wilkins B, Woods F, Himelrick D (2002) Assays to assess freeze injury of Satsuma mandarin. HortScience 37:871–877

    Google Scholar 

  • Ortuño MF, Alarcon JJ, Nicolas E, Torrecillas A (2007) Water status indicators of lemon trees in response to flooding and recovery. Biol Plant 51:292–296

    Google Scholar 

  • Paranychianakis NV, Chartzoulakis KS (2005) Irrigation of Mediterranean crops with saline water: from physiology to management practices. Agric Ecosyst Environ 106:171–187

    CAS  Google Scholar 

  • Patel SK, Dubey AK, Srivastav M, Singh AK, Dahuja A, Pandey RN (2011) Effect of NaCl in the irrigation water on growth, anti-oxidant enzyme activities, and nutrient uptake in five citrus rootstocks. J Hortic Sci Biotechnol 86:189–195

    CAS  Google Scholar 

  • Pérez-Clemente RM, Montoliu A, Zandalinas SI, Ollas C, Gómez-Cadenas A (2012) Carrizo citrange plants do not require the presence of roots to modulate the response to osmotic stress. Sci World J. doi:10.1100/2012/795396

    Google Scholar 

  • Pérez-Pérez JG, Romero P, Navarro JM, Botía P (2008) Response of sweet range cv ‘Lane late’ to deficit irrigation in two rootstocks. I: water relations, leaf gas exchange and vegetative growth. Irrig Sci 26:415–425

    Google Scholar 

  • Pérez-Pérez JG, Robles JM, Tovar JC, Botía P (2009) Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: water relations, osmotic adjustment and gas exchange. Sci Hortic 122:83–90

    Google Scholar 

  • Pérez-Pérez JG, García J, Robles JM, Botía P (2010) Economic analysis of navel orange cv. ‘Lane Late’ grown on two different drought-tolerant rootstock under deficit irrigation in Sout-eastern Spain. Agric Water Manag 97:157–164

    Google Scholar 

  • Poggi I, Polidori JJ, Gandoin JM, Paolacci V, Battini M, Albertini M, Ameglio T, Cochard H (2007) Stomatal regulation and xylem cavitation in Clementine (Citrus clementina Hort.) under drought conditions. J Hortic Sci Biotechnol 82:845–848

    Google Scholar 

  • Pompeu Junior J (1991) Porta-enxertos para citros. In: Rodriguez O, Viegas F, Pompeu Junior J, Amaro AA (eds) Citricultura Brasileira. Fundação Cargill, Campinas, pp 265–280

    Google Scholar 

  • Pompeu Junior J (2005) Porta-enxertos. In: Mattos Junior D, De Negri JD, Pio RM, Pompeu Junior J (eds) Citrus. Centro Apta Citros Sylvio Moreira, IAC, Cordeirópolis, pp 61–104

    Google Scholar 

  • Pompeu Junior J, Blumer S (2008a) Laranjeiras e seus porta-enxertos nos viveiros de mudas cítricas do Estado de São Paulo em 2004-2007. Laranja 29:35–50

    Google Scholar 

  • Pompeu Junior J, Blumer S (2008b) Morte Súbita dos Citros: suscetibilidade de seleções de limão Cravo e uso de interenxertos. Rev Bras Frutic 30:1159–1161

    Google Scholar 

  • Raveh E, Levy Y (2005) Analysis of xylem water as an indicator of current chloride uptake status in citrus trees. Sci Hortic 103:317–327

    CAS  Google Scholar 

  • Rewald B, Raveh E, Gendler T, Ephrath JE, Rachmilevitch S (2012) Phenotypic plasticity and water flux rates of Citrus root orders under salinity. J Exp Bot 63:2717–2727

    CAS  PubMed  Google Scholar 

  • Ribeiro RV (2006) Seasonal variation of photosynthesis and water relations in Valencia sweet orange plants. PhD thesis, Piracicaba, University of São Paulo, São Paulo

    Google Scholar 

  • Ribeiro RV, Machado EC, Oliveira RF (2004) Growth- and leaf-temperature effects on photosynthesis of sweet orange seedlings infected with Xylella fastidiosa. Plant Pathol 53:334–340

    Google Scholar 

  • Ribeiro RV, Machado EC, Santos MG (2005) Leaf temperature in sweet orange plants under field conditions: influence of meteorological elements. Rev Bras Agrometeorol 13:353–368

    Google Scholar 

  • Ribeiro RV, Machado EC, Oliveira RF (2006) Temperature response of photosynthesis and its interaction with light intensity in sweet orange leaf discs under nonphotorespiratory condition. Ciênc Agrotecnol 30:670–678

    Google Scholar 

  • Ribeiro RV, Machado EC, Santos MG, Oliveira RF (2009) Seasonal and diurnal changes in photosynthetic limitation of young sweet orange trees. Environ Exp Bot 66:203–211

    CAS  Google Scholar 

  • Ribeiro RV, Machado EC, Espinoza-Núñez E, Ramos RA, Machado DFSP (2012) Moderate warm temperature improves shoot growth, affects carbohydrate status and stimulates photosynthesis of sweet orange plants. Braz J Plant Physiol 24:37–46

    CAS  Google Scholar 

  • Rieger AUO (1995) Offsetting effects of reduced root hydraulic conductivity and osmotic adjustment following drought. Tree Physiol 15:379–385

    PubMed  Google Scholar 

  • Rodriguez O, Rossetti V, Muller GW, Moreira CS, Prates HS, Negri JD, Greve A (1979) Declínio de plantas cítricas em São Paulo. In: Anais 5o Congresso Brasileiro de Fruticultura, Pelotas, Sociedade Brasileira de Fruticultura, pp 927–932

    Google Scholar 

  • Rodríguez-Gamir J, Intrigliolo DS, Primo-Millo E, Forner-Giner MA (2010) Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiol Plant 139:159–169

    PubMed  Google Scholar 

  • Rodríguez-Gamir J, Ancillo G, Carmen González-Mas M, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol Biochem 49:636–645

    PubMed  Google Scholar 

  • Rodríguez-Gamir J, Ancillo G, Legaz F, Primo-Millo E, Forner-Giner MA (2012) Influence of salinity on PIP gene expression in citrus roots and its relationship with root hydraulic conductance, transpiration and chloride exclusion from leaves. Environ Exp Bot 78:163–166

    Google Scholar 

  • Romero P, Navarro JM, Pérez-Pérez JG, García-Sánchez F, Gómez-Gómez A, Porras I, Martínez B, Botía P (2006) Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiol 26:1537–1548

    CAS  PubMed  Google Scholar 

  • Ruiz D, Martínez V, Cerdá A (1997) Citrus response to salinity: growth and nutrient uptake. Tree Physiol 17:141–150

    CAS  PubMed  Google Scholar 

  • Ruiz D, Martínez V, Cerdá A (1999) Demarcating specific ion (NaCl, Cl-, Na+) and osmotic effects in the response of two citrus rootstocks to salinity. Sci Hortic 80:213–224

    CAS  Google Scholar 

  • Ruiz-Sánchez MC, Domingo R, Morales D, Torrecillas A (1996) Water relations of Fino lemon plants on two rootstocks under flooded conditions. Plant Sci 120:119–125

    Google Scholar 

  • Sahin-Çevik M, Moore GA (2006a) Identification and expression analysis of cold-regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Plant Mol Biol 62:83–97

    PubMed  Google Scholar 

  • Sahin-Çevik M, Moore GA (2006b) Isolation and characterization of a novel RING-H2 finger gene induced in response to cold and drought in the interfertile Citrus relative Poncirus trifoliata. Physiol Plant 126:153–161

    Google Scholar 

  • Saleh B, Allario T, Dambier D, Ollitrault P, Morillon R (2008) Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Comptes R Biol 331:703–710

    Google Scholar 

  • Sampaio VR (1993) Efeitos de filtros de Poncirus trifoliata e de alturas de enxertia na laranjeira Valência enxertada em limão Cravo. Sci Agric 50:360–364

    Google Scholar 

  • Santos CMA, Ribeiro RV, Magalhães-Filho JR, Machado DFSP, Machado EC (2011) Low substrate temperature imposes high limitation to photosynthesis of orange plants as compared to atmospheric chilling. Photosynthetica 49:546–554

    Google Scholar 

  • Schaffer B (1991) Flood tolerance of Tahiti lime rootstocks in South Florida soil. Proc Fla State Hortic Soc 104:31–32

    Google Scholar 

  • Setin DW, Carvalho SA, Mattos Junior D (2009) Crescimento inicial e estado nutricional da laranjeira 'Valência' sobre porta-enxertos múltiplos de limoeiro ‘Cravo’ e citrumeleiro ‘Swingle’. Bragantia 68:397–406

    Google Scholar 

  • Shrestha YH, Ishii T, Matsumoto I, Kadoya K (1996) Effects of vesicular-arbuscular mycorrhizal fungi on Satsuma mandarin tree growth and water stress tolerance and on fruit development and quality. J Jap Soc Hortic Sci 64:801–807

    Google Scholar 

  • Sinclair WB (1984) The biochemistry and physiology of the lemon and other citrus fruits. University of California, Riverside

    Google Scholar 

  • Sinclair TR, Allen LH (1982) Carbon dioxide and water vapour exchange of leaves on field-grown citrus trees. J Exp Bot 33:1166–1175

    CAS  Google Scholar 

  • Spiegel-Roy P, Goldschmidt EE (1996) Biology of citrus. Cambridge University Press, Cambridge

    Google Scholar 

  • Storey R, Walker RR (1999) Citrus and salinity. Sci Hortic 78:39–81

    CAS  Google Scholar 

  • Sykes SR (1992) The inheritance of salt exclusion in woody perennial fruit species. Plant Soil 146:123–129

    CAS  Google Scholar 

  • Sykes SR (2011) Chloride and sodium excluding capacities of citrus rootstock germplasm introduced to Australia from the People’s Republic of China. Sci Hortic 128:443–449

    CAS  Google Scholar 

  • Syvertsen JP (1981) Hydraulic conductivity of four commercial citrus rootstocks. J Am Soc Hortic Sci 106:378–381

    Google Scholar 

  • Syvertsen JP (1987) Nitrogen-content and CO2 assimilation characteristics of citrus leaves. HortScience 22:289–291

    CAS  Google Scholar 

  • Syvertsen JP, Graham JH (1985) Hydraulic conductivity of roots, mineral nutrition, and leaf gas exchange of citrus rootstocks. J Am Soc Hortic Sci 110:865–869

    Google Scholar 

  • Syvertsen JP, Levy Y (2005) Salinity interactions with other abiotic and biotic stresses in citrus. HortScience 15:100–103

    Google Scholar 

  • Syvertsen JP, Lloyd JJ (1994) Citrus. In: Schaffer B, Andersen PC (eds) Handbook of environmental physiology of fruit crops, vol II, Sub-tropical and tropical crops. CRC Press, Boca Raton, pp 5–99

    Google Scholar 

  • Syvertsen JP, Yelenosky G (1987) Moderate salinity stress can enhance cold hardiness of citrus rootstock seedlings. HortScience 22:1141

    Google Scholar 

  • Syvertsen JP, Yelenosky G (1988) Salinity can enhance freeze tolerance of citrus rootstock seedlings by modifying growth, water relations, and mineral nutrition. J Am Soc Hortic Sci 113:889–893

    Google Scholar 

  • Syvertsen JP, Zablotowicz RM, Smith ML Jr (1983) Soil temperature and flooding effects on two species of citrus. I. Plant growth and hydraulic conductivity. Plant Soil 72:3–12

    Google Scholar 

  • Syvertsen JP, Lloyd J, Kriedemann PE (1988) Salinity and drought stress effects on foliar ion concentration, water relations, and photosynthetic characteristics of orchard citrus. Aus J Agric Res 39:619–627

    Google Scholar 

  • Syvertsen JP, Melgar JC, García-Sánchez F (2010) Salinity tolerance and leaf water use efficiency in citrus. J Am Soc Hortic Sci 135:33–39

    Google Scholar 

  • Tajvar Y, Ghazvini RF, Hamidoghli Y, Sajedi RH (2011) Antioxidant changes of Thomson navel orange (Citrus sinensis) on three rootstocks under low temperature stress. Hortic Environ Biotechnol 52:576–580

    CAS  Google Scholar 

  • Tozlu I, Moore GA, Guy CL (2000) Effect of increasing NaCl concentration on stem elongation, dry mass production and macro- and micro-nutrient accumulation in Poncirus trifoliata. Aus J Plant Physiol 27:35–42

    CAS  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19–38

    Google Scholar 

  • Vasconcellos LABC, Castle WS (1994) Trunk xylem anatomy of mature healthy and blighted grapefruit trees on several rootstocks. J Am Soc Hortic Sci 119:185–194

    Google Scholar 

  • Velikova V, La Mantia T, Laureti M, Michelozzi M, Nogues I, Loreto F (2012) The impact of winter flooding with saline water on foliar carbon uptake and the volatile fraction of leaves and fruits of lemon (Citrus limon) trees. Funct Plant Biol 39:199–213

    CAS  Google Scholar 

  • Veste M, Ben-Gal A, Shani U (2000) Impact of thermal stress and high VPD on gas exchange and chlorophyll fluorescence of Citrus grandis under desert conditions. Acta Hort 531:143–149

    Google Scholar 

  • Vu JCV, Yelenosky G (1988) Solar irradiance and drought stress effects on the activity and concentration of ribulose bisphosphate carboxylase in ‘Valencia’ orange leaves. Isr J Bot 37:245–256

    CAS  Google Scholar 

  • Vu JCV, Yelenosky G (1991) Photosynthetic responses of citrus trees to soil flooding. Physiol Plant 81:7–14

    CAS  Google Scholar 

  • Vu JCV, Yelenosky G (1993) Photosynthesis and freeze tolerance comparisons of the newly released Ambersweet hybrid with Valencia orange. Environ Exp Bot 33:391–395

    Google Scholar 

  • Walker RR (1986) Sodium exclusion and potassium-sodium selectivity in salt-treated Trifoliate orange (Poncirus trifoliata) and Cleopatra mandarin (Citrus reticulata) plants. Aus J Plant Physiol 13:293–303

    CAS  Google Scholar 

  • Walker RR, Torokfalvy E, Downton WJS (1982) Photosynthetic responses of the citrus varieties Rangpur lime and Etrog citron to salt treatment. Aus J Plant Physiol 9:783–790

    Google Scholar 

  • Walker RR, Blackmore DH, Qing S (1993) Carbon-dioxide assimilation and foliar ion concentration of lemon (Citrus limon L.) trees irrigated with NaCl or Na2SO4. Aus J Plant Physiol 20:173–185

    CAS  Google Scholar 

  • Webster AD (1995) Rootstock and interstock effects on deciduous fruit tree vigour, precocity, and yield productivity. N Z J Crop Hortic Sci 23:373–382

    Google Scholar 

  • Webster AD (2004) Vigour mechanism in dwarfing rootstocks for temperate fruit trees. Acta Hortic 658:29–41

    Google Scholar 

  • Wilcox DA, Davies FS (1981) Temperature-dependent and diurnal root conductivities in two citrus rootstocks. HortScience 16:303–305

    Google Scholar 

  • Wilcox DA, Davies FS, Buchanan DW (1983) Root temperature, water relations, and cold hardiness in two citrus rootstocks. J Am Soc Hortic Sci 108:318–321

    Google Scholar 

  • Wu Q-S, Zou Y-N, Xia R-X (2006) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42:166–172

    CAS  Google Scholar 

  • Wu Q-S, Zou Y-N, Xiai R-X, Wang M-Y (2007) Five Glomus species affect water relations of Citrus tangerine during drought stress. Bot Stud 48:147–154

    Google Scholar 

  • Wutscher HK (1979) Citrus rootstocks. In: Janick J (ed) Horticultural reviews. AVI Publishing, Westport, pp 230–269

    Google Scholar 

  • Wutscher HK (1988) Rootstocks effects on fruit quality. In: Ferguson JJ, Wardowski WF (eds) Factors affecting fruit quality. University of Florida, Lake Alfred, pp 24–34

    Google Scholar 

  • Yakushiji H, Nonami H, Fukuyama T, Ono S, Takagi N, Hashimoto Y (1996) Sugar accumulation enhanced by osmoregulation in Satsuma mandarin fruit. J Am Soc Hortic Sci 121:466–472

    CAS  Google Scholar 

  • Yelenosky G (1985) Cold hardiness in Citrus. Hortic Rev 7:201–238

    Google Scholar 

  • Yelenosky G, Vu JCV (1992) Ability of Valencia sweet orange to cold-acclimate on cold-sensitive citron rootstock. HortScience 27:1201–1203

    Google Scholar 

  • Zekri M (1993a) Seedling emergence, growth, and mineral concentration of 3 citrus rootstocks under salt stress. J Plant Nutr 129:137–143

    Google Scholar 

  • Zekri M (1993b) Salinity and calcium effects on emergence, growth and mineral composition of seedlings of 8 citrus rootstocks. J Hortic Sci 68:53–62

    CAS  Google Scholar 

  • Zekri M, Parsons LR (1990) Comparative effects of NaCl and polyethylene-glycol on root distribution, growth, and stomatal conductance of sour orange seedlings. Plant Soil 129:137–143

    CAS  Google Scholar 

  • Zekri M, Parsons LR (1992) Salinity tolerance of citrus rootstocks – effects of salt on root and leaf mineral concentrations. Plant Soil 147:171–181

    CAS  Google Scholar 

  • Zhang CK, Lang P, Dane F, Ebel RC, Singh NK, Locy RD, Dozler WA (2005a) Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata). Plant Cell Rep 23:764–769

    CAS  PubMed  Google Scholar 

  • Zhang CK, Lang P, Ebel RC, Dane F, Singh NK, Locy RD, Dozler WA (2005b) Down-regulated gene expression of cold acclimated Poncirus trifoliata. Can J Plant Sci 85:417–424

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Brazilian Council for Scientific and Technological Development (CNPq, Brazil) and the Sao Paulo Research Foundation (FAPESP, Brazil) for financial support and fellowships granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael V. Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ribeiro, R.V., Espinoza-Núñez, E., Junior, J.P., Filho, F.A.A.M., Machado, E.C. (2014). Citrus Rootstocks for Improving the Horticultural Performance and Physiological Responses Under Constraining Environments. In: Ahmad, P., Wani, M., Azooz, M., Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8830-9_1

Download citation

Publish with us

Policies and ethics