Skip to main content

Role of Central Serotonin Receptors in Nicotine Addiction

  • Chapter
  • First Online:
Book cover Nicotinic Receptors

Abstract

Regulation of normal or abnormal behaviour is critically controlled by the central serotonergic systems. Recent evidence has suggested that serotonin (5-HT) neurotransmission dysfunction contributes to a variety of pathological conditions, including depression, anxiety, schizophrenia and Parkinson’s disorders. There is also a great amount of evidence indicating that 5-HT signalling may affect the reinforcing properties of drugs of abuse by the interaction and modulation of dopamine (DA) function. This chapter is focused on one of the more addictive drugs, nicotine. It is widely recognised that the effects of nicotine are strongly associated with the stimulatory action it exhibits on mesolimbic DAergic function. We outline the role of 5-HT and its plethora of receptors, focusing on 5-HT2 subtypes with relation to their involvement in the neurobiology of nicotine addiction. We also explore the novel pharmacological approaches using 5-HT agents for the treatment of nicotine dependence. Compelling evidence shows that 5-HT2C receptor agonists may be possible therapeutic targets for smoking cessation, although further investigation is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Giovanni G, Esposito E, Di Matteo V. 5-HT2C receptors in the pathophysiology of CNS disease. The receptors. New York: Springer; 2011. p. 1–557.

    Google Scholar 

  2. Di Giovanni G, Di Matteo V, Esposito E. Serotonin–dopamine interaction: experimental evidence and therapeutic relevance. Progress in brain research, vol. 172. Amsterdam: Elsevier; 2008. p. 1–665.

    Google Scholar 

  3. Müller CP, Jacobs BL. Handbook of behavioral neurobiology of serotonin: handbook of behavioral neuroscience. 1st ed. Massachusetts: Academic Press; 2010. p. 836.

    Google Scholar 

  4. Hannon J, Hoyer D. Molecular biology of 5-HT receptors. Behav Brain Res. 2008;195:198–213.

    CAS  PubMed  Google Scholar 

  5. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002;71(4):533–54.

    CAS  PubMed  Google Scholar 

  6. Bonasera SJ, Tecott LH. Mouse models of serotonin receptor function: toward a genetic dissection of serotonin systems. Pharmacol Ther. 2000;88(2):133–42.

    CAS  PubMed  Google Scholar 

  7. Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992;13(5):177–84.

    CAS  PubMed  Google Scholar 

  8. Brown AS, Gershon S. Dopamine and depression. J Neural Transm Gen Sect. 1993;91(2–3):75–109.

    CAS  PubMed  Google Scholar 

  9. Jenck F, et al. The role of 5-HT2C receptors in affective disorders. Expert Opin Investig Drugs. 1998;7(10):1587–99.

    CAS  PubMed  Google Scholar 

  10. Di Matteo V, et al. Role of 5-HT2C receptors in the control of central dopamine function. Trends Pharmacol Sci. 2001;22(5):229–32.

    PubMed  Google Scholar 

  11. Higgins GA, Fletcher PJ. Serotonin and drug reward: focus on 5-HT2C receptors. Eur J Pharmacol. 2003;480(1–3):151–62.

    CAS  PubMed  Google Scholar 

  12. Giorgetti M, Tecott LH. Contributions of 5-HT(2C) receptors to multiple actions of central serotonin systems. Eur J Pharmacol. 2004;488(1–3):1–9.

    CAS  PubMed  Google Scholar 

  13. Alex KD, Pehek EA. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther. 2007;113(2):296–320.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Di Giovanni G, Esposito E, Di Matteo V. 5-HT2C receptors in the pathophysiology of CNS disease. New York: Humana Press; 2011. p. 560.

    Google Scholar 

  15. Hoyer D, et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994;46(2):157–203.

    CAS  PubMed  Google Scholar 

  16. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38(8):1083–152.

    CAS  PubMed  Google Scholar 

  17. Di Giovanni G, Esposito E, Di Matteo V. Role of serotonin in central dopamine dysfunction. CNS Neurosci Ther. 2010;16(3):179–94.

    PubMed  Google Scholar 

  18. Murphy DL, et al. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology. 2008;55(6):932–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Thompson JH. Serotonin and the alimentary tract. Res Commun Chem Pathol Pharmacol. 1971;2(4):687–781.

    CAS  PubMed  Google Scholar 

  20. Cirillo C, Vanden Berghe P, Tack J. Role of serotonin in gastrointestinal physiology and pathology. Minerva Endocrinol. 2011;36(4):311–24.

    CAS  PubMed  Google Scholar 

  21. Feldberg W, Toh CC. Distribution of 5-hydroxytryptamine (serotonin, enteramine) in the wall of the digestive tract. J Physiol. 1953;119:352–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Costa M, et al. Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their visualization and reactions to drug treatment. Neuroscience. 1982;7:351–63.

    CAS  PubMed  Google Scholar 

  23. Erspamer V, Asero B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature. 1952;169(4306):800–1.

    CAS  PubMed  Google Scholar 

  24. Rapport MM, Green AA, Page IH. Serum vasoconstrictor (serotonin).4. Isolation and characterization. J Biol Chem. 1948;176(3):1243–51.

    CAS  PubMed  Google Scholar 

  25. Twarog BM, Page IH. Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol. 1953;175(1):157–61.

    CAS  PubMed  Google Scholar 

  26. Brodie BB, Pletscher A, Shore PA. Evidence that serotonin has a role in brain function. Science. 1955;122(3177):968.

    CAS  PubMed  Google Scholar 

  27. Costa E, Aprison MH. Studies on the 5-hydroxytryptamine (serotonin) content in human brain. J Nerv Ment Dis. 1958;126(3):289–93.

    CAS  PubMed  Google Scholar 

  28. Whitaker-Azmita PM. Serotonin and brain development: role in human developmental diseases. Brain Res Bull. 2001;56(5):479–85.

    Google Scholar 

  29. Abrams JK, et al. Anatomic and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci. 2004;1018:46–57.

    PubMed  Google Scholar 

  30. Dahlström A, Fuxe K. Evidence for the existence of monoamine-containing neurons in the central nervous system I Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl. 1964;(Suppl. 232):1–55.

    Google Scholar 

  31. Baker KG, Halliday GM, Tork I. Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol. 1990;301(2):147–61.

    CAS  PubMed  Google Scholar 

  32. Azmitia EC, Segal M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol. 1978;179(3):641–67.

    CAS  PubMed  Google Scholar 

  33. van der Kooy D, Hattori T. Dorsal raphe cells with collateral projections to the caudate-putamen and substantia nigra: a fluorescent retrograde double labeling study in the rat. Brain Res. 1980;186(1):1–7.

    PubMed  Google Scholar 

  34. Herve D, et al. Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res. 1987;435(1–2):71–83.

    CAS  PubMed  Google Scholar 

  35. Van Bockstaele EJ, Biswas A, Pickel VM. Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res. 1993;624(1–2):188–98.

    PubMed  Google Scholar 

  36. Van Bockstaele EJ, Cestari DM, Pickel VM. Synaptic structure and connectivity of serotonin terminals in the ventral tegmental area: potential sites for modulation of mesolimbic dopamine neurons. Brain Res. 1994;647(2):307–22.

    PubMed  Google Scholar 

  37. Moukhles H, et al. Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience. 1997;76(4):1159–71.

    CAS  PubMed  Google Scholar 

  38. Hillegaart V. Functional topography of brain serotonergic pathways in the rat. Acta Physiol Scand Suppl. 1991;598:1–54.

    CAS  PubMed  Google Scholar 

  39. Corvaja N, Doucet G, Bolam JP. Ultrastructure and synaptic targets of the raphe-nigral projection in the rat. Neuroscience. 1993;55(2):417–27.

    CAS  PubMed  Google Scholar 

  40. Di Matteo V, et al. Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies. Prog Brain Res. 2008;172:7–44.

    PubMed  Google Scholar 

  41. Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev. 1992;72(1):165–229.

    CAS  PubMed  Google Scholar 

  42. Phillipson OT. Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J Comp Neurol. 1979;187(1):117–43.

    CAS  PubMed  Google Scholar 

  43. Esposito E, Di Matteo V, Di Giovanni G. Serotonin-dopamine interaction: an overview. Prog Brain Res. 2008;172:3–6.

    CAS  PubMed  Google Scholar 

  44. Bowker RM, et al. Organization of descending serotonergic projections to the spinal cord. Prog Brain Res. 1982;57:239–65.

    CAS  PubMed  Google Scholar 

  45. Bowker RM. The relationship between descending serotonin projections and ascending projections in the nucleus raphe magnus: a double labeling study. Neurosci Lett. 1986;70(3):348–53.

    CAS  PubMed  Google Scholar 

  46. McMahon LL, Yoon KW, Chiappinelli VA. Nicotinic receptor activation facilitates gabaergic neurotransmission in the avian lateral spiriform nucleus. Neuroscience. 1994;59(3):689–98.

    CAS  PubMed  Google Scholar 

  47. Fletcher PJ, Grottick AJ, Higgins GA. Differential effects of the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor antagonist SB242084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology. 2002;27(4):576–86.

    CAS  PubMed  Google Scholar 

  48. Fletcher A, et al. Opposing effects of 5-HT2A and 5-HT2C receptor antagonists in the rat and mouse on premature responding in the five-choice serial reaction time test. Psychopharmacology. 2007;195:223–34.

    CAS  PubMed  Google Scholar 

  49. Hjorth S, Magnusson T. The 5-HT 1A receptor agonist, 8-OH-DPAT, preferentially activates cell body 5-HT autoreceptors in rat brain in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1988;338(5):463–71.

    CAS  PubMed  Google Scholar 

  50. Di Giovanni G, et al. Central serotonin2C receptor: from physiology to pathology. Curr Top Med Chem. 2006;6(18):1909–25.

    PubMed  Google Scholar 

  51. Di Giovanni G, et al. Serotonin involvement in the basal ganglia pathophysiology: could the 5-HT2C receptor be a new target for therapeutic strategies? Curr Med Chem. 2006;13(25):3069–81.

    PubMed  Google Scholar 

  52. Fletcher PJ, Le AD, Higgins GA. Serotonin receptors as potential targets for modulation of nicotine use and dependence. Prog Brain Res. 2008;172:361–83.

    CAS  PubMed  Google Scholar 

  53. Fletcher A, Higgins GA. Serotonin and reward-related behaviour: focus on 5-HT2C receptors. In: Di Giovanni G, Esposito E, Di Matteo V, editors. 5-HT2C receptors in the pathophysiology of CNS disease. New York: Springer; 2011. p. 293–324.

    Google Scholar 

  54. Di Matteo V, Esposito E, Di Giovanni G. Neurodegenerative disorders: from molecules to man (part 1). CNS Neurol Disord Drug Targets. 2007;6(6):375–6.

    PubMed  Google Scholar 

  55. Markou A. Neurobiology of nicotine dependence. Philos Trans R Soc Biol Sci. 2008;363(1507):3159–68.

    CAS  Google Scholar 

  56. Clarke PBS, et al. Evidence that mesolimbic dopaminergic activation underlies the locomotor stimulant action of nicotine in rats. Journal of Pharmacology and Experimental Therapeutics. 1988;246(2):701–8.

    CAS  PubMed  Google Scholar 

  57. Corrigall WA, Coen KM, Adamson KL. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res. 1994;653(1–2):278–84.

    CAS  PubMed  Google Scholar 

  58. Di Chiara G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol. 2000;393(1–3):295–314.

    PubMed  Google Scholar 

  59. Coppen A. The biochemistry of affective disorders. Br J Psychiatry. 1967;113(504):1237–64.

    CAS  PubMed  Google Scholar 

  60. Seth P, et al. Nicotinic–serotonergic interactions in brain and behaviour. Pharmacol Biochem Behav. 2002;71(4):795–805.

    CAS  PubMed  Google Scholar 

  61. Thomas KH, et al. Smoking cessation treatment and risk of depression, suicide, and self harm in the Clinical Practice Research Datalink: prospective cohort study. BMJ. 2013;347:f5704.

    PubMed Central  PubMed  Google Scholar 

  62. Balfour DJ, Ridley DL. The effects of nicotine on neural pathways implicated in depression: a factor in nicotine addiction? Pharmacol Biochem Behav. 2000;66(1):79–85.

    CAS  PubMed  Google Scholar 

  63. Quattrocki E, Baird A, Yurgelun-Todd D. Biological aspects of the link between smoking and depression. Harv Rev Psychiatry. 2000;8(3):99–110.

    CAS  PubMed  Google Scholar 

  64. Bitner RS, et al. Reduced nicotinic receptor-mediated antinociception following in vivo antisense knock-down in rat. Brain Res. 2000;871(1):66–74.

    CAS  PubMed  Google Scholar 

  65. Bitner RS, Nikkel AL. Alpha-7 nicotinic receptor expression by two distinct cell types in the dorsal raphe nucleus and locus coeruleus of rat. Brain Res. 2002;938(1–2):45–54.

    CAS  PubMed  Google Scholar 

  66. Cucchiaro G, Chaijale N, Commons KG. The dorsal raphe nucleus as a site of action of the antinociceptive and behavioral effects of the alpha4 nicotinic receptor agonist epibatidine. J Pharmacol Exp Ther. 2005;313(1):389–94.

    CAS  PubMed  Google Scholar 

  67. Cucchiaro G, Commons KG. Alpha 4 nicotinic acetylcholine receptor subunit links cholinergic to brainstem monoaminergic neurotransmission. Synapse. 2003;49(3):195–205.

    CAS  PubMed  Google Scholar 

  68. Enkhbaatar P, et al. The inhibition of inducible nitric oxide synthase in ovine sepsis model. Shock. 2006;25(5):522–7.

    CAS  PubMed  Google Scholar 

  69. Galindo-Charles L, et al. Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors. Synapse. 2008;62(8):601–15.

    CAS  PubMed  Google Scholar 

  70. Li X, et al. Presynaptic nicotinic receptors facilitate monoaminergic transmission. J Neurosci. 1998;18(5):1904–12.

    CAS  PubMed  Google Scholar 

  71. Mihailescu S, Guzman-Marin R, Drucker-Colin R. Nicotine stimulation of dorsal raphe neurons: effects on laterodorsal and pedunculopontine neurons. Eur Neuropsychopharmacol. 2001;11(5):359–66.

    CAS  PubMed  Google Scholar 

  72. Chang B, et al. Nicotinic excitation of serotonergic projections from dorsal raphe to the nucleus accumbens. J Neurophysiol. 2011;106(2):801–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Engberg G, et al. Nicotine inhibits firing activity of dorsal raphe 5-HT neurones in vivo. Naunyn Schmiedebergs Arch Pharmacol. 2000;362(1):41–5.

    CAS  PubMed  Google Scholar 

  74. Touiki K, et al. Effects of tobacco and cigarette smoke extracts on serotonergic raphe neurons in the rat. Neuroreport. 2007;18(9):925–9.

    CAS  PubMed  Google Scholar 

  75. Ma Z, et al. Effects on serotonin of (−)nicotine and dimethylphenylpiperazinium in the dorsal raphe and nucleus accumbens of freely behaving rats. Neuroscience. 2005;135(3):949–58.

    CAS  PubMed  Google Scholar 

  76. Ribeiro EB, et al. Effects of systemic nicotine on serotonin release in rat brain. Brain Res. 1993;621(2):311–8.

    CAS  PubMed  Google Scholar 

  77. Ranade SP, Mainen ZF. Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. J Neurophysiol. 2009;102(5):3026–37.

    PubMed  Google Scholar 

  78. Summers KL, Lippiello P, Giacobini E. A microdialysis study of the effects of the nicotinic agonist RJR-2403 on cortical release of acetylcholine and biogenic amines. Neurochem Res. 1996;21(10):1181–6.

    CAS  PubMed  Google Scholar 

  79. Schwartz RD, Lehmann J, Kellar KJ. Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J Neurochem. 1984;42(5):1495–8.

    CAS  PubMed  Google Scholar 

  80. Reuben M, Clarke PB. Nicotine-evoked [3H]5-hydroxytryptamine release from rat striatal synaptosomes. Neuropharmacology. 2000;39(2):290–9.

    CAS  PubMed  Google Scholar 

  81. Yu ZJ, Wecker L. Chronic nicotine administration differentially affects neurotransmitter release from rat striatal slices. J Neurochem. 1994;63(1):186–94.

    CAS  PubMed  Google Scholar 

  82. Takahashi H, et al. Nicotine increases stress-induced serotonin release by stimulating nicotinic acetylcholine receptor in rat striatum. Synapse. 1998;28(3):212–9.

    CAS  PubMed  Google Scholar 

  83. Lendvai B, et al. Differential mechanisms involved in the effect of nicotinic agonists DMPP and lobeline to release [3H]5-HT from rat hippocampal slices. Neuropharmacology. 1996;35(12):1769–77.

    CAS  PubMed  Google Scholar 

  84. Kenny PJ, File SE, Neal MJ. Evidence for a complex influence of nicotinic acetylcholine receptors on hippocampal serotonin release. J Neurochem. 2000;75(6):2409–14.

    CAS  PubMed  Google Scholar 

  85. Benwell ME, Balfour DJ. Effects of nicotine administration and its withdrawal on plasma corticosterone and brain 5-hydroxyindoles. Psychopharmacology (Berl). 1979;63(1):7–11.

    CAS  Google Scholar 

  86. Takada Y, et al. Changes in the central and peripheral serotonergic system in rats exposed to water-immersion restrained stress and nicotine administration. Neurosci Res. 1995;23(3):305–11.

    CAS  PubMed  Google Scholar 

  87. Matta SG, et al. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berl). 2007;190(3):269–319.

    CAS  Google Scholar 

  88. Crooks PA, Dwoskin LP. Contribution of CNS nicotine metabolites to the neuropharmacological effects of nicotine and tobacco smoking. Biochem Pharmacol. 1997;54(7):743–53.

    CAS  PubMed  Google Scholar 

  89. Clemens KJ, et al. The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats. Int J Neuropsychopharmacol. 2009;12(10):1355–66.

    CAS  PubMed  Google Scholar 

  90. Khalki H, et al. A tobacco extract containing alkaloids induces distinct effects compared to pure nicotine on dopamine release in the rat. Neurosci Lett. 2013;544:85–8.

    CAS  PubMed  Google Scholar 

  91. Guillem K, et al. Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J Neurosci. 2005;25(38):8593–600.

    CAS  PubMed  Google Scholar 

  92. Pazos A, Cortes R, Palacios JM. Quantitative autoradiographic mapping of serotonin receptors in the rat-brain. 2. Serotonin-2 receptors. Brain Res. 1985;346(2):231–49.

    CAS  PubMed  Google Scholar 

  93. Pompeiano M, Palacios JM, Mengod G. Distribution of the serotonin 5-Ht2 receptor family messenger-Rnas—comparison between 5-Ht(2a) and 5-Ht(2c) receptors. Mol Brain Res. 1994;23(1–2):163–78.

    CAS  PubMed  Google Scholar 

  94. Bubser M, et al. Distribution of serotonin 5-HT(2A) receptors in afferents of the rat striatum. Synapse. 2001;39(4):297–304.

    CAS  PubMed  Google Scholar 

  95. Willins DL, Meltzer HY. Serotonin 5-HT2C agonists selectively inhibit morphine-induced dopamine efflux in the nucleus accumbens. Brain Res. 1998;781(1–2):291–9.

    CAS  PubMed  Google Scholar 

  96. Cornea-Hébert V, et al. Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol. 1999;409(2):187–209.

    PubMed  Google Scholar 

  97. Doherty MD, Pickel VM. Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res. 2000;864(2):176–85.

    CAS  PubMed  Google Scholar 

  98. Nocjar C, Roth BL, Pehek EA. Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience. 2002;111(1):163–76.

    CAS  PubMed  Google Scholar 

  99. Olausson P, et al. Effects of 5-HT1A and 5-HT2 receptor agonists on the behavioral and neurochemical consequences of repeated nicotine treatment. Eur J Pharmacol. 2001;420(1):45–54.

    CAS  PubMed  Google Scholar 

  100. Batman AM, Munzar P, Beardsley PM. Attenuation of nicotine’s discriminative stimulus effects in rats and its locomotor activity effects in mice by serotonergic 5-HT2A/2C receptor agonists. Psychopharmacology (Berl). 2005;179(2):393–401.

    CAS  Google Scholar 

  101. Zaniewska M, et al. Effects of the serotonin 5-HT2A and 5-HT2C receptor ligands on the discriminative stimulus effects of nicotine in rats. Eur J Pharmacol. 2007;571(2–3):156–65.

    CAS  PubMed  Google Scholar 

  102. Arnt J. Characterization of the discriminative stimulus properties induced by 5-HT1 and 5-HT2 agonists in rats. Pharmacol Toxicol. 1989;64(2):165–72.

    CAS  PubMed  Google Scholar 

  103. Nichols DE. Hallucinogens. Pharmacol Ther. 2004;101(2):131–81.

    CAS  PubMed  Google Scholar 

  104. Porras G, et al. 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology. 2002;26(3):311–24.

    CAS  PubMed  Google Scholar 

  105. Auclair A, et al. Role of serotonin 2A receptors in the D-amphetamine-induced release of dopamine: comparison with previous data on alpha1b-adrenergic receptors. J Neurochem. 2004;91(2):318–26.

    CAS  PubMed  Google Scholar 

  106. O'Neill MF, Heron-Maxwell CL, Shaw G. 5-HT2 receptor antagonism reduces hyperactivity induced by amphetamine, cocaine, and MK-801 but not D1 agonist C-APB. Pharmacol Biochem Behav. 1999;63(2):237–43.

    PubMed  Google Scholar 

  107. Herin DV, et al. Elevated expression of serotonin 5-HT(2A) receptors in the rat ventral tegmental area enhances vulnerability to the behavioral effects of cocaine. Front Psychiatry. 2013;4:2.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Levin ED, et al. Ketanserin, a 5-HT2 receptor antagonist, decreases nicotine self-administration in rats. Eur J Pharmacol. 2008;600(1–3):93–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Fletcher PJ, et al. Effects of the 5-HT2C receptor agonist Ro60-0175 and the 5-HT2A receptor antagonist M100907 on nicotine self-administration and reinstatement. Neuropharmacology. 2012;62(7):2288–98.

    CAS  PubMed  Google Scholar 

  110. Higgins GA, Sellers EM, Fletcher PJ. From obesity to substance abuse: therapeutic opportunities for 5-HT2C receptor agonists. Trends Pharmacol Sci. 2013;34(10):560–70.

    CAS  PubMed  Google Scholar 

  111. Bubar MJ, et al. Validation of a selective serotonin 5-HT2C receptor antibody for utilization in fluorescence immunohistochemistry studies. Brain Res. 2005;1063(2):105–13.

    CAS  PubMed  Google Scholar 

  112. Bubar MJ, Cunningham KA. Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience. 2007;146(1):286–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Prisco S, Pagannone S, Esposito E. Serotonin-dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. J Pharmacol Exp Ther. 1994;271(1):83–90.

    CAS  PubMed  Google Scholar 

  114. Di Giovanni G, et al. Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience. 1999;91(2):587–97.

    PubMed  Google Scholar 

  115. De Deurwaerdere P, et al. Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res. 2013;230(4):477–511.

    PubMed  Google Scholar 

  116. Martin JR, et al. 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther. 1998;286(2):913–24.

    CAS  PubMed  Google Scholar 

  117. Millan MJ, Dekeyne A, Gobert A. Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology. 1998;37(7):953–5.

    CAS  PubMed  Google Scholar 

  118. Di Matteo V, et al. SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology. 1999;38(8):1195–205.

    PubMed  Google Scholar 

  119. Di Matteo V, et al. Biochemical and electrophysiological evidence that RO 60-0175 inhibits mesolimbic dopaminergic function through serotonin(2C) receptors. Brain Res. 2000;865(1):85–90.

    PubMed  Google Scholar 

  120. Gobert A, et al. Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse. 2000;36(3):205–21.

    CAS  PubMed  Google Scholar 

  121. Kennett GA, et al. In vitro and in vivo profile of SB 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol. 1996;117(3):427–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Kennett GA, et al. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology. 1997;36(4–5):609–20.

    CAS  PubMed  Google Scholar 

  123. Di Matteo V, et al. Selective blockade of serotonin2C/2B receptors enhances dopamine release in the rat nucleus accumbens. Neuropharmacology. 1998;37(2):265–72.

    PubMed  Google Scholar 

  124. De Deurwaerdere P, et al. Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci. 2004;24(13):3235–41.

    PubMed  Google Scholar 

  125. Pozzi L, et al. Stimulation of 5-hydroxytryptamine (5-HT(2C) ) receptors in the ventrotegmental area inhibits stress-induced but not basal dopamine release in the rat prefrontal cortex. J Neurochem. 2002;82(1):93–100.

    CAS  PubMed  Google Scholar 

  126. Hutson PH, et al. Activation of mesolimbic dopamine function by phencyclidine is enhanced by 5-HT(2C/2B) receptor antagonists: neurochemical and behavioural studies. Neuropharmacology. 2000;39(12):2318–28.

    CAS  PubMed  Google Scholar 

  127. Porras G, et al. Central serotonin4 receptors selectively regulate the impulse-dependent exocytosis of dopamine in the rat striatum: in vivo studies with morphine, amphetamine and cocaine. Neuropharmacology. 2002;43(7):1099–109.

    CAS  PubMed  Google Scholar 

  128. Quarta D, Naylor GG, Stolerman IP. The serotonin 2C receptor agonist Ro-60-0175 attenuates effects of nicotine in the five-choice serial reaction time task and in drug discrimination. Psychopharmacology (Berl). 2007;193:391–402.

    CAS  Google Scholar 

  129. Grottick AJ, Corrigall WA, Higgins GA. Activation of 5-HT(2C) receptors reduces the locomotor and rewarding effects of nicotine. Psychopharmacology (Berl). 2001;157(3):292–8.

    CAS  Google Scholar 

  130. Higgins GA, et al. Evaluation of chemically diverse 5-HT(2)c receptor agonists on behaviours motivated by food and nicotine and on side effect profiles. Psychopharmacology (Berl). 2012;226(3):475–90.

    Google Scholar 

  131. Grottick AJ, Fletcher PJ, Higgins GA. Studies to investigate the role of 5-HT(2C) receptors on cocaine- and food-maintained behavior. J Pharmacol Exp Ther. 2000;295(3):1183–91.

    CAS  PubMed  Google Scholar 

  132. Neisewander JL, Acosta JI. Stimulation of 5-HT2C receptors attenuates cue and cocaine-primed reinstatement of cocaine-seeking behavior in rats. Behav Pharmacol. 2007;18(8):791–800.

    CAS  PubMed  Google Scholar 

  133. Pockros LA, et al. Blockade of 5-HT2A receptors in the medial prefrontal cortex attenuates reinstatement of cue-elicited cocaine-seeking behavior in rats. Psychopharmacology (Berl). 2010;213(2–3):307–20.

    Google Scholar 

  134. Tomkins DM, et al. An investigation of the role of 5-HT(2C) receptors in modifying ethanol self-administration behaviour. Pharmacol Biochem Behav. 2002;71(4):735–44.

    CAS  PubMed  Google Scholar 

  135. Levin ED, et al. Lorcaserin, a 5-HT2C agonist, decreases nicotine self-administration in female rats. J Pharmacol Exp Ther. 2011;338(3):890–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Ji SP, et al. Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse. Nat Med. 2006;12(3):324–9.

    CAS  PubMed  Google Scholar 

  137. Hayes DJ, Mosher TM, Greenshaw AJ. Differential effects of 5-HT2C receptor activation by WAY 161503 on nicotine-induced place conditioning and locomotor activity in rats. Behav Brain Res. 2009;197(2):323–30.

    CAS  PubMed  Google Scholar 

  138. Zaniewska M, McCreary AC, Filip M. Interactions of serotonin (5-HT)2 receptor-targeting ligands and nicotine: locomotor activity studies in rats. Synapse. 2009;63(8):653–61.

    CAS  PubMed  Google Scholar 

  139. Di Matteo V, Pierucci M, Esposito E. Selective stimulation of serotonin2C receptors blocks the enhancement of striatal and accumbal dopamine release induced by nicotine administration. J Neurochem. 2004;89(2):418–29.

    PubMed  Google Scholar 

  140. Pierucci M, Di Matteo V, Esposito E. Stimulation of serotonin2C receptors blocks the hyperactivation of midbrain dopamine neurons induced by nicotine administration. J Pharmacol Exp Ther. 2004;309(1):109–18.

    CAS  PubMed  Google Scholar 

  141. Di Giovanni G, et al. m-Chlorophenylpiperazine excites non-dopaminergic neurons in the rat substantia nigra and ventral tegmental area by activating serotonin-2C receptors. Neuroscience. 2001;103(1):111–6.

    PubMed  Google Scholar 

  142. Chevalier G, et al. Disinhibition as a basic process in the expression of striatal functions. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Res. 1985;334(2):215–26.

    CAS  PubMed  Google Scholar 

  143. Maurice N, et al. Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the cortico-nigral circuits. J Neurosci. 1999;19(11):4674–81.

    CAS  PubMed  Google Scholar 

  144. Beyeler A, et al. Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia. Neuroscience. 2010;169(1):158–70.

    CAS  PubMed  Google Scholar 

  145. Navailles S, et al. In vivo evidence that 5-HT2C receptor antagonist but not agonist modulates cocaine-induced dopamine outflow in the rat nucleus accumbens and striatum. Neuropsychopharmacology. 2004;29(2):319–26.

    CAS  PubMed  Google Scholar 

  146. Olausson P, Engel JA, Soderpalm B. Behavioral sensitization to nicotine is associated with behavioral disinhibition; counteraction by citalopram. Psychopharmacology (Berl). 1999;142(2):111–9.

    CAS  Google Scholar 

  147. Kenny PJ, Markou A. Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav. 2001;70(4):531–49.

    CAS  PubMed  Google Scholar 

  148. Zaniewska M, et al. Effects of serotonin (5-HT)2 receptor ligands on depression-like behavior during nicotine withdrawal. Neuropharmacology. 2010;58(7):1140–6.

    CAS  PubMed  Google Scholar 

  149. Anderson JE, et al. Treating tobacco use and dependence: an evidence-based clinical practice guideline for tobacco cessation. Chest. 2002;121(3):932–41.

    PubMed  Google Scholar 

  150. Jain A. Treating nicotine addiction. BMJ. 2003;327(7428):1394–5.

    PubMed Central  PubMed  Google Scholar 

  151. Shahan TA, et al. Comparing the reinforcing efficacy of nicotine containing and de-nicotinized cigarettes: a behavioral economic analysis. Psychopharmacology (Berl). 1999;147(2):210–6.

    CAS  Google Scholar 

  152. Mucha RF, Geier A, Pauli P. Modulation of craving by cues having differential overlap with pharmacological effect: evidence for cue approach in smokers and social drinkers. Psychopharmacology (Berl). 1999;147(3):306–13.

    CAS  Google Scholar 

  153. Dols M, et al. Smokers can learn to influence their urge to smoke. Addict Behav. 2000;25(1):103–8.

    CAS  PubMed  Google Scholar 

  154. Cryan JF, et al. Non-nicotinic neuropharmacological strategies for nicotine dependence: beyond bupropion. Drug Discov Today. 2003;8(22):1025–34.

    CAS  PubMed  Google Scholar 

  155. Ascher JA, et al. Bupropion: a review of its mechanism of antidepressant activity. J Clin Psychiatry. 1995;56(9):395–401.

    CAS  PubMed  Google Scholar 

  156. Rigotti NA. Clinical practice. Treatment of tobacco use and dependence. N Engl J Med. 2002;346(7):506–12.

    PubMed  Google Scholar 

  157. Coe JW, et al. Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem. 2005;48(10):3474–7.

    CAS  PubMed  Google Scholar 

  158. Eisenberg MJ, et al. Pharmacotherapies for smoking cessation: a meta-analysis of randomized controlled trials. CMAJ. 2008;179(2):135–44.

    PubMed Central  PubMed  Google Scholar 

  159. Rollema H, et al. Rationale, pharmacology and clinical efficacy of partial agonists of alpha4beta2 nACh receptors for smoking cessation. Trends Pharmacol Sci. 2007;28(7):316–25.

    CAS  PubMed  Google Scholar 

  160. Slemmer JE, Martin BR, Damaj MI. Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther. 2000;295(1):321–7.

    CAS  PubMed  Google Scholar 

  161. Cooper BR, et al. Evidence that the acute behavioral and electrophysiological effects of bupropion (Wellbutrin) are mediated by a noradrenergic mechanism. Neuropsychopharmacology. 1994;11(2):133–41.

    CAS  PubMed  Google Scholar 

  162. Mansvelder HD, et al. Bupropion inhibits the cellular effects of nicotine in the ventral tegmental area. Biochem Pharmacol. 2007;74(8):1283–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Dong J, Blier P. Modification of norepinephrine and serotonin, but not dopamine, neuron firing by sustained bupropion treatment. Psychopharmacology (Berl). 2001;155(1):52–7.

    CAS  Google Scholar 

  164. Reperant C, et al. Effect of the [alpha]4[beta]2* nicotinic acetylcholine receptor partial agonist varenicline on dopamine release in [beta]2 knock-out mice with selective re-expression of the [beta]2 subunit in the ventral tegmental area. Neuropharmacology. 2010;58(2):346–50.

    CAS  PubMed  Google Scholar 

  165. Rollema H, et al. Preclinical pharmacology of the alpha4beta2 nAChR partial agonist varenicline related to effects on reward, mood and cognition. Biochem Pharmacol. 2009;78(7):813–24.

    CAS  PubMed  Google Scholar 

  166. Rollema H, et al. Effect of co-administration of varenicline and antidepressants on extracellular monoamine concentrations in rat prefrontal cortex. Neurochem Int. 2011;58(1):78–84.

    CAS  PubMed  Google Scholar 

  167. Mills EJ, et al. Efficacy of pharmacotherapies for short-term smoking abstinance: a systematic review and meta-analysis. Harm Reduct J. 2009;6:25.

    PubMed Central  PubMed  Google Scholar 

  168. US Food and Drug Administration CfDEaR. Varenicline (marketed as Chantix) information. 2008. Washington (DC): US Department of Health and Human Services. www.fda.gov/CDER/Drug/infopage/varenicline/default.htm. Accessed 12 Dec 2010.

  169. Hall SM, et al. Nortriptyline and cognitive-behavioral therapy in the treatment of cigarette smoking. Arch Gen Psychiatry. 1998;55(8):683–90.

    CAS  PubMed  Google Scholar 

  170. Prochazka AV, et al. A randomized trial of nortriptyline for smoking cessation. Arch Intern Med. 1998;158(18):2035–9.

    CAS  PubMed  Google Scholar 

  171. Hall SM, et al. Psychological intervention and antidepressant treatment in smoking cessation. Arch Gen Psychiatry. 2002;59(10):930–6.

    CAS  PubMed  Google Scholar 

  172. Edwards NB, et al. Doxepin as an adjunct to smoking cessation: a double-blind pilot study. Am J Psychiatry. 1989;146(3):373–6.

    CAS  PubMed  Google Scholar 

  173. Dalack GW, et al. Mood, major depression, and fluoxetine response in cigarette smokers. Am J Psychiatry. 1995;152(3):398–403.

    CAS  PubMed  Google Scholar 

  174. Schneider NG, et al. Efficacy of buspirone in smoking cessation: a placebo-controlled trial. Clin Pharmacol Ther. 1996;60(5):568–75.

    CAS  PubMed  Google Scholar 

  175. Farley AC, et al. Interventions for preventing weight gain after smoking cessation. Cochrane Database Syst Rev. 2012;1, CD006219.

    PubMed  Google Scholar 

  176. Dahlstrom A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia. 1964;20(7):398–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by University of Malta funding scheme (GDG) and EU COST Action CM1103 “Structure-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain” (GDG and PDD). SC. and LP. were supported by Erasmus placement scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Di Giovanni Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pierucci, M., Chambers, S., Partridge, L., De Deurwaerdère, P., Di Giovanni, G. (2014). Role of Central Serotonin Receptors in Nicotine Addiction. In: Lester, R. (eds) Nicotinic Receptors. The Receptors, vol 26. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1167-7_14

Download citation

Publish with us

Policies and ethics