Skip to main content

Investigating Plasmodesmata Genetics with Virus-Induced Gene Silencing and an Agrobacterium-Mediated GFP Movement Assay

  • Protocol
  • First Online:
Plasmodesmata

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1217))

Abstract

Plasmodesmata (PD) are channels that connect the cytoplasm of adjacent plant cells, permitting intercellular transport and communication. PD function and formation are essential to plant growth and development, but we still know very little about the genetic pathways regulating PD transport. Here, we present a method for assaying changes in the rate of PD transport following genetic manipulation. Gene expression in leaves is modified by virus-induced gene silencing. Seven to ten days after infection with Tobacco rattle virus carrying a silencing trigger, the gene(s) of interest is silenced in newly arising leaves. In these new leaves, individual cells are then transformed with Agrobacterium to express GFP, and the rate of GFP diffusion via PD is measured. By measuring GFP diffusion both within the epidermis and between the epidermis and mesophyll, the assay can be used to study the effects of silencing a gene(s) on PD transport in general, or transport through secondary PD specifically. Plant biologists working in several fields will find this assay useful, since PD transport impacts plant physiology, development, and defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burch-Smith TM, Zambryski PC (2012) Plasmodesmata paradigm shift: regulation from without versus within. Annu Rev Plant Biol 63:1–22

    Article  Google Scholar 

  2. Raven J (2005) Evolution of plasmodesmata. In: Oparka K (ed) Plasmodesmata. Blackwell Publishing Ltd, Ames, IA, pp 33–52

    Chapter  Google Scholar 

  3. Rutschow HL, Baskin TI, Kramer EM (2011) Regulation of solute flux through plasmodesmata in the root meristem. Plant Physiol 155:1817–1826

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Stonebloom S, Brunkard JO, Cheung AC et al (2012) Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiol 158:190–199

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Liarzi O, Epel BL (2005) Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals. Protoplasma 225:67–76

    Article  PubMed  CAS  Google Scholar 

  6. Baron C, Zambryski PC (1995) The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu Rev Genet 29:107–129

    Article  PubMed  CAS  Google Scholar 

  7. Burch-Smith TM, Zambryski PC (2010) Loss of INCREASED SIZE EXCLUSION LIMIT (ISE)1 or ISE2 increases the formation of secondary plasmodesmata. Curr Biol 20:989–993

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Burch-Smith TM, Stonebloom S, Xu M, Zambryski P (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61–74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Zambryski PC, Xu M, Stonebloom S, Burch-Smith TM (2012) Embryogenesis as a model system to dissect the genetic and developmental regulation of cell-to-cell transport via plasmodesmata. In: Hülskamp M, Kragler F (eds) Short and long distance signaling. Springer, New York, NY, pp 45–60

    Chapter  Google Scholar 

  10. Kim I, Hempel FD, Sha K, Pfluger J, Zambryski P (2002) Identification of a developmental transition in plasmodesmatal function during embryogenesis in Arabidopsis thaliana. Development 129:1261–1272

    PubMed  CAS  Google Scholar 

  11. Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    Article  PubMed  CAS  Google Scholar 

  12. Stonebloom S, Burch-Smith TM, Kim I et al (2009) Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc Natl Acad Sci U S A 106:17229–17234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Xu M, Cho E, Burch-Smith TM, Zambryski PC (2012) Plasmodesmata formation and cell-to-cell transport function are reduced in decreased size exclusion limit 1 during embryogenesis in Arabidopsis. Proc Natl Acad Sci U S A 109:5098–5103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Wu S, Gallagher KL (2012) Transcription factors on the move. Curr Opin Plant Biol 15:645–651

    Article  PubMed  CAS  Google Scholar 

  15. Xu XM, Wang J, Xuan Z et al (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–1144

    Article  PubMed  CAS  Google Scholar 

  16. Bombarely A, Rosli HG, Vrebalov J et al (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact 25:1523–1530

    Article  PubMed  CAS  Google Scholar 

  17. Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53

    PubMed  CAS  Google Scholar 

  18. Zipfel C, Robatzek S, Navarro L et al (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  PubMed  CAS  Google Scholar 

  19. Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Hayward A, Padmanabhan M, Dinesh-Kumar SP (2011) Virus induced silencing in Nicotiana benthamiana and other plant species. Methods Mol Biol 678:55–63

    Article  PubMed  CAS  Google Scholar 

  21. Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  PubMed  CAS  Google Scholar 

  22. Magori S, Citovsky V (2011) Agrobacterium counteracts host-induced degradation of its effector F-box protein. Sci Signal 4:ra69

    Article  PubMed  Google Scholar 

  23. Magori S, Citovsky V (2012) The role of the ubiquitin-proteasome system in Agrobacterium tumefaciens-mediated genetic transformation of plants. Plant Physiol 160:65–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Liu D, Shi L, Han C et al (2012) Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 7:e46451

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Aguilar J, Zupan J, Cameron TA, Zambryski PC (2010) Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence induced cells. Proc Natl Acad Sci U S A 107:3758–3763

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

J.O.B. and A.M.R. are supported by National Science Foundation predoctoral fellowships and by National Institutes of Health Grant GM45244 to P.Z. T.M.B.S. is supported by start-up funds from the University of Tennessee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Zambryski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brunkard, J.O., Burch-Smith, T.M., Runkel, A.M., Zambryski, P. (2015). Investigating Plasmodesmata Genetics with Virus-Induced Gene Silencing and an Agrobacterium-Mediated GFP Movement Assay. In: Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 1217. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1523-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1523-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1522-4

  • Online ISBN: 978-1-4939-1523-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics