Skip to main content

Dopamine Receptors in the Subthalamic Nucleus: Identification and Localization of D5 Receptors

  • Protocol
  • First Online:
Book cover Dopamine Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 96))

  • 1007 Accesses

Abstract

Herein we present methodological approaches for the identification and characterization of dopamine receptors in the subthalamic nucleus, a component nucleus of the basal ganglia, at pre-and postsynaptic locations and of their roles with an emphasis given to the dopamine D5 receptor subtype. This chapter focuses on the possible sources of divergence between electrophysiological studies and describes the pharmacological tools available for functional studies of this receptor. The procedures for single-cell reverse transcription PCR (polymerase chain reaction) identification of dopamine D5 receptor mRNA and the immunochemical detection of the receptor at cellular and subcellular levels are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26(4):317–330

    Article  PubMed  Google Scholar 

  2. Rice ME, Patel JC, Cragg SJ (2011) Dopamine release in the basal ganglia. Neuroscience 198:112–137. doi:10.1016/j.neuroscience.2011.08.066

  3. Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. Trends Neurosci 23(10 Suppl):S28–S33

    Article  CAS  PubMed  Google Scholar 

  4. Cragg SJ, Baufreton J, Xue Y, Bolam JP, Bevan MD (2004) Synaptic release of dopamine in the subthalamic nucleus. Eur J Neurosci 20(7):1788–1802. doi:10.1111/j.1460-9568.2004.03629.x

  5. Benoit-Marand M, Borrelli E, Gonon F (2001) Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo. J Neurosci 21(23):9134–9141

    CAS  PubMed  Google Scholar 

  6. Gonon FG (1988) Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24(1):19–28

    Article  CAS  PubMed  Google Scholar 

  7. Rommelfanger KS, Wichmann T (2010) Extrastriatal dopaminergic circuits of the Basal Ganglia. Front Neuroanat 4:139. doi:10.3389/fnana.2010.00139

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wilson CJ, Bevan MD (2011) Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson's disease. Neuroscience 198:54–68. doi:10.1016/j.neuroscience.2011.06.049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Flores G, Liang JJ, Sierra A, Martinez-Fong D, Quirion R, Aceves J, Srivastava LK (1999) Expression of dopamine receptors in the subthalamic nucleus of the rat: characterization using reverse transcriptase-polymerase chain reaction and autoradiography. Neuroscience 91(2):549–556

    Article  CAS  PubMed  Google Scholar 

  10. Baufreton J, Garret M, Rivera A, de la Calle A, Gonon F, Dufy B, Bioulac B, Taupignon A (2003) D5 (not D1) dopamine receptors potentiate burst-firing in neurons of the subthalamic nucleus by modulating an L-type calcium conductance. J Neurosci 23(3):816–825

    CAS  PubMed  Google Scholar 

  11. Svenningsson P, Le Moine C (2002) Dopamine D1/5 receptor stimulation induces c-fos expression in the subthalamic nucleus: possible involvement of local D5 receptors. Eur J Neurosci 15(1):133–142

    Article  PubMed  Google Scholar 

  12. Baufreton J, Zhu ZT, Garret M, Bioulac B, Johnson SW, Taupignon AI (2005) Dopamine receptors set the pattern of activity generated in subthalamic neurons. FASEB J 19(13):1771–1777. doi:10.1096/fj.04-3401hyp

    Article  CAS  PubMed  Google Scholar 

  13. Loucif AJ, Woodhall GL, Sehirli US, Stanford IM (2008) Depolarisation and suppression of burst firing activity in the mouse subthalamic nucleus by dopamine D1/D5 receptor activation of a cyclic-nucleotide gated non-specific cation conductance. Neuropharmacology 55(1):94–105. doi:10.1016/j.neuropharm.2008.04.025

    Article  CAS  PubMed  Google Scholar 

  14. Ramanathan S, Tkatch T, Atherton JF, Wilson CJ, Bevan MD (2008) D2-like dopamine receptors modulate SKCa channel function in subthalamic nucleus neurons through inhibition of Cav2.2 channels. J Neurophysiol 99(2):442–459. doi:10.1152/jn.00998.2007

    Article  CAS  PubMed  Google Scholar 

  15. Zhu ZT, Shen KZ, Johnson SW (2002) Pharmacological identification of inward current evoked by dopamine in rat subthalamic neurons in vitro. Neuropharmacology 42(6):772–781

    Article  CAS  PubMed  Google Scholar 

  16. Shen KZ, Johnson SW (2000) Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. J Physiol 525(Pt 2):331–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Baufreton J, Bevan MD (2008) D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus. J Physiol 586(8):2121–2142. doi:10.1113/jphysiol.2008.151118

  18. Floran B, Floran L, Erlij D, Aceves J (2004) Activation of dopamine D4 receptors modulates [3H]GABA release in slices of the rat thalamic reticular nucleus. Neuropharmacology 46(4):497–503. doi:10.1016/j.neuropharm.2003.10.004

    Article  CAS  PubMed  Google Scholar 

  19. Hallworth NE, Wilson CJ, Bevan MD (2003) Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J Neurosci 23(20):7525–7542

    CAS  PubMed  Google Scholar 

  20. Beurrier C, Ben-Ari Y, Hammond C (2006) Preservation of the direct and indirect pathways in an in vitro preparation of the mouse basal ganglia. Neuroscience 140(1):77–86. doi:10.1016/j.neuroscience.2006.02.029

    Article  CAS  PubMed  Google Scholar 

  21. Bosch C, Mailly P, Degos B, Deniau JM, Venance L (2012) Preservation of the hyperdirect pathway of basal ganglia in a rodent brain slice. Neuroscience 215:31–41. doi:10.1016/j.neuroscience.2012.04.033

    Article  CAS  PubMed  Google Scholar 

  22. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225

    CAS  PubMed  Google Scholar 

  23. Tofighy A, Abbott A, Centonze D, Cooper AJ, Noor E, Pearce SM, Puntis M, Stanford IM, Wigmore MA, Lacey MG (2003) Excitation by dopamine of rat subthalamic nucleus neurones in vitro-a direct action with unconventional pharmacology. Neuroscience 116(1):157–166

    Article  CAS  PubMed  Google Scholar 

  24. Shen KZ, Zhu ZT, Munhall A, Johnson SW (2003) Dopamine receptor supersensitivity in rat subthalamus after 6-hydroxydopamine lesions. Eur J Neurosci 18(11):2967–2974

    Article  PubMed  Google Scholar 

  25. Drago J, Gerfen CR, Lachowicz JE, Steiner H, Hollon TR, Love PE, Ooi GT, Grinberg A, Lee EJ, Huang SP et al (1994) Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc Natl Acad Sci U S A 91(26):12564–12568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hollon TR, Bek MJ, Lachowicz JE, Ariano MA, Mezey E, Ramachandran R, Wersinger SR, Soares-da-Silva P, Liu ZF, Grinberg A, Drago J, Young WS 3rd, Westphal H, Jose PA, Sibley DR (2002) Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive. J Neurosci 22(24):10801–10810

    CAS  PubMed  Google Scholar 

  27. Tiberi M, Caron MG (1994) High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype. J Biol Chem 269(45):27925–27931

    CAS  PubMed  Google Scholar 

  28. Demchyshyn LL, McConkey F, Niznik HB (2000) Dopamine D5 receptor agonist high affinity and constitutive activity profile conferred by carboxyl-terminal tail sequence. J Biol Chem 275(31):23446–23455. doi:10.1074/jbc.M000157200

    Article  CAS  PubMed  Google Scholar 

  29. D'Aoust JP, Tiberi M (2010) Role of the extracellular amino terminus and first membrane-spanning helix of dopamine D1 and D5 receptors in shaping ligand selectivity and efficacy. Cell Signal 22(1):106–116. doi:10.1016/j.cellsig.2009.09.020

    Article  PubMed  Google Scholar 

  30. Martin MW, Scott AW, Johnston DE Jr, Griffin S, Luedtke RR (2001) Typical antipsychotics exhibit inverse agonist activity at rat dopamine D1-like receptors expressed in Sf9 cells. Eur J Pharmacol 420(2–3):73–82

    Article  CAS  PubMed  Google Scholar 

  31. Chetrit J, Taupignon A, Froux L, Morin S, Bouali-Benazzouz R, Naudet F, Kadiri N, Gross CE, Bioulac B, Benazzouz A (2013) Inhibiting subthalamic D5 receptor constitutive activity alleviates abnormal electrical activity and reverses motor impairment in a rat model of Parkinson's disease. J Neurosci 33(37):14840–14849. doi:10.1523/JNEUROSCI.0453-13.2013

    Article  CAS  PubMed  Google Scholar 

  32. Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, de la Calle A (2000) Dopamine D5 receptors of rat and human brain. Neuroscience 100(4):689–699

    Article  CAS  PubMed  Google Scholar 

  33. Christophe E, Roebuck A, Staiger JF, Lavery DJ, Charpak S, Audinat E (2002) Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. J Neurophysiol 88(3):1318–1327

    CAS  PubMed  Google Scholar 

  34. Karagiannis A, Gallopin T, David C, Battaglia D, Geoffroy H, Rossier J, Hillman EM, Staiger JF, Cauli B (2009) Classification of NPY-expressing neocortical interneurons. J Neurosci 29(11):3642–3659. doi:10.1523/JNEUROSCI.0058-09.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Smith NJ, Milligan G (2010) Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 62(4):701–725. doi:10.1124/pr.110.002667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. So CH, Verma V, Alijaniaram M, Cheng R, Rashid AJ, O'Dowd BF, George SR (2009) Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers. Mol Pharmacol 75(4):843–854. doi:10.1124/mol.108.051805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Liu F, Wan Q, Pristupa ZB, Yu XM, Wang YT, Niznik HB (2000) Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature 403(6767):274–280. doi:10.1038/35002014

    Article  CAS  PubMed  Google Scholar 

  38. Kruusmagi M, Kumar S, Zelenin S, Brismar H, Aperia A, Scott L (2009) Functional differences between D(1) and D(5) revealed by high resolution imaging on live neurons. Neuroscience 164(2):463–469. doi:10.1016/j.neuroscience.2009.08.052

    Article  CAS  PubMed  Google Scholar 

  39. Ladepeche L, Dupuis JP, Bouchet D, Doudnikoff E, Yang L, Campagne Y, Bezard E, Hosy E, Groc L (2013) Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proc Natl Acad Sci U S A 110(44):18005–18010. doi:10.1073/pnas.1310145110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhou FW, Jin Y, Matta SG, Xu M, Zhou FM (2009) An ultra-short dopamine pathway regulates basal ganglia output. J Neurosci 29(33):10424–10435. doi:10.1523/JNEUROSCI.4402-08.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Duan TT, Tan JW, Yuan Q, Cao J, Zhou QX, Xu L (2013) Acute ketamine induces hippocampal synaptic depression and spatial memory impairment through dopamine D1/D5 receptors. Psychopharmacology 228(3):451–461. doi:10.1007/s00213-013-3048-2

    Article  CAS  PubMed  Google Scholar 

  42. Medin T, Rinholm JE, Owe SG, Sagvolden T, Gjedde A, Storm-Mathisen J, Bergersen LH (2013) Low dopamine D5 receptor density in hippocampus in an animal model of attention-deficit/hyperactivity disorder (ADHD). Neuroscience 242:11–20. doi:10.1016/j.neuroscience.2013.03.036

    Article  CAS  PubMed  Google Scholar 

  43. Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490(7419):262–266. doi:10.1038/nature11466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Brown MT, Bellone C, Mameli M, Labouebe G, Bocklisch C, Balland B, Dahan L, Lujan R, Deisseroth K, Luscher C (2010) Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation. PLoS One 5(12):e15870. doi:10.1371/journal.pone.0015870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Rossi MA, Sukharnikova T, Hayrapetyan VY, Yang L, Yin HH (2013) Operant self-stimulation of dopamine neurons in the substantia nigra. PLoS One 8(6):e65799. doi:10.1371/journal.pone.0065799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217. doi:10.1124/pr.110.002642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank the Regional Council of Aquitaine and Fondation de France who partly supported this work by grants 12006005 (FCAN scheme), and 2005013850 and 00016810, respectively. Financial support was also provided by CNRS and University of Bordeaux. D. Sibley (NINDS, Bethesda) and J. Drago (Monash University) allowed us to use the D5R and D1R mutant mice they engineered. J. Waddington (Royal College of Surgeons, Dublin) donated the D5R mutant mice we used to generate a colony. L.F received a PhD fellowship from MRT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Taupignon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Froux, L., Suarez-Boomgaard, D., Baufreton, J., Rivera, A., Garret, M., Taupignon, A. (2015). Dopamine Receptors in the Subthalamic Nucleus: Identification and Localization of D5 Receptors. In: Tiberi, M. (eds) Dopamine Receptor Technologies. Neuromethods, vol 96. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2196-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2196-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2195-9

  • Online ISBN: 978-1-4939-2196-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics