Skip to main content

Cannabinoid Control of Fear Responses

  • Chapter
  • First Online:

Abstract

In 2002, a landmark study showed that the endogenous activity of the cannabinoid type-1 (CB1) receptors is necessary for extinction of conditioned freezing in mice (Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002 Aug 1;418(6897):530–4.). Since extinction of conditioned freezing is an important indicator of fear adaptation in animals and because our ability to control emotional responses is important to ensure adapted behaviors, the potential function of the endocannabinoid system (ECS) in such processes has generated a large interest. In this chapter, we will provide pieces of information linking the activity of the ECS and fear modulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ohman A. Fear and anxiety: evolutionary, cognitive, and clinical perspectives. In: Lewis M & Haviland-Jones JM, editors. Handbook of emotions, 2nd edition. New York: Guilford Publications; 2000. pp. 573–93.

    Google Scholar 

  2. American Psychiatric Association Diagnostic and statistical manual of mental disorders : DSM-IV-TR. Washington: American Psychiatric Association; 2000.

    Google Scholar 

  3. Gross JJ. Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression, and physiology. J Pers Soc Psychol. 1998;74(1):224–37.

    Article  CAS  PubMed  Google Scholar 

  4. Weiss JM. Effects of coping responses on stress. J Comp Physiol Psychol. 1968;65(2):251–60.

    Article  CAS  PubMed  Google Scholar 

  5. Lazarus RS, Folkman S. Stress, appraisal, and coping. New York: Springer; 1984.

    Google Scholar 

  6. Wechsler B. Coping and coping strategies: a behavioural view. Appl Anim Behav Sci. 1995;43(2):123–34.

    Article  Google Scholar 

  7. Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, De Jong IC, Ruis MAW, Blokhuis HJ. Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev. 1999;23(7):925–35.

    Article  CAS  PubMed  Google Scholar 

  8. De Boer SF, Koolhaas JM. Defensive burying in rodents: ethology, neurobiology and psychopharmacology. Eur J Pharmacol. 2003;463(1–3):145–61.

    Article  CAS  PubMed  Google Scholar 

  9. Koolhaas JM, De Boer SF, Coppens CM, Buwalda B. Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Front Neuroendocrinol. 2010;31(3):307–21.

    Article  CAS  PubMed  Google Scholar 

  10. Darwin C. The expression of the emotions in man and animals. London: John Murray; 1872.

    Book  Google Scholar 

  11. Ekman P. Emotions inside out: 130 years after Darwin’s the expression of the emotions in man and animals. New York: New York Academy of Sciences; 2003.

    Google Scholar 

  12. LeDoux JE. Evolution of human emotion: a view through fear. Prog Brain Res. 2012;195:431–42.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bolles RC. Species-specific defense reactions and avoidance learning. Psychol Rev. 1970;77(1):32.

    Article  Google Scholar 

  14. Blanchard RJ, Blanchard DC. Passive and active reactions to fear-eliciting stimuli. J Comp Physiol Psychol. 1969;68(1):129–35.

    Article  CAS  PubMed  Google Scholar 

  15. McAllister WR, McAllister DE, Douglass WK. The inverse relationship between shock intensity and shuttle-box avoidance learning in rats: a reinforcement explanation. J Comp Physiol Psychol. 1971;74(3):426–33.

    Article  Google Scholar 

  16. Pavlov IP. Conditioned reflexes. London: Routledge and Kegan Paul; 1927.

    Google Scholar 

  17. Fanselow MS. Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci. 1980;15(4):177–82.

    CAS  PubMed  Google Scholar 

  18. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.

    Article  CAS  PubMed  Google Scholar 

  19. LeDoux JE, Sakaguchi A, Reis DJ. Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci. 1984;4(3):683–98.

    CAS  PubMed  Google Scholar 

  20. LaBar KS, LeDoux JE, Spencer DD, Phelps EA. Impaired fear conditioning following unilateral temporal lobectomy in humans. J Neurosci. 1995;15(10):6846–55.

    CAS  PubMed  Google Scholar 

  21. Blanchard DC, Griebel G, Blanchard RJ. Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev. 2001;25(3):205–18.

    Article  CAS  PubMed  Google Scholar 

  22. Blanchard DC, Griebel G, Blanchard RJ. The mouse defense test battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol. 2003;463(1–3):97–116.

    Article  CAS  PubMed  Google Scholar 

  23. Blanchard RJ, Fukunaga KK, Blanchard DC. Environmental control of defensive reactions to footshock. Bull Psychon Soc. 1976;8(129):40.

    Google Scholar 

  24. Maren S. Synaptic transmission and plasticity in the amygdala. An emerging physiology of fear conditioning circuits. Mol Neurobiol. 1996;13(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  25. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Lüthi A. Amygdala inhibitory circuits and the control of fear memory. Neuron. 2009;62(6):757–71.

    Article  CAS  PubMed  Google Scholar 

  26. Hartley CA, Phelps EA. Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacology. 2010;35(1):136–46.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106(2):274–85.

    Article  CAS  PubMed  Google Scholar 

  28. Kim JJ, Fanselow MS. Modality-specific retrograde amnesia of fear. Science. 1992;256(5057):675–7.

    Article  CAS  PubMed  Google Scholar 

  29. Calandreau L, Trifilieff P, Mons N, Costes L, Marien M, Marighetto A, Micheau J, Jaffard R, Desmedt A. Extracellular hippocampal acetylcholine level controls amygdala function and promotes adaptive conditioned emotional response. J Neurosci. 2006;26(52):13556–66.

    Article  CAS  PubMed  Google Scholar 

  30. Trifilieff P, Herry C, Vanhoutte P, Caboche J, Desmedt A, Riedel G, Mons N, Micheau J. Foreground contextual fear memory consolidation requires two independent phases of hippocampal ERK/CREB activation. Learn Mem. 2006;13(3):349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rescorla RA. Probability of shock in the presence and absence of CS in fear conditioning. J Comp Physiol Psychol. 1968;66(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  32. Cain CK, Blouin AM, Barad M. Temporally massed CS presentations generate more fear extinction than spaced presentations. J Exp Psychol Anim Behav Process. 2003;29(4):323–33.

    Article  PubMed  Google Scholar 

  33. Myers KM, Davis M. Mechanisms of fear extinction. Mol Psychiatry. 2007;12(2):120–50.

    Article  CAS  PubMed  Google Scholar 

  34. Kamprath K, Wotjak CT. Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn Mem. 2004;11(6):770–86.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kamprath K, Marsicano G, Tang J, Monory K, Bisogno T, Di Marzo V, Lutz B, Wotjak CT. Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci. 2006;26(25):6677–86.

    Article  CAS  PubMed  Google Scholar 

  36. Fanselow MS. Shock-induced analgesia on the formalin test: effects of shock severity, naloxone, hypophysectomy, and associative variables. Behav Neurosci. 1984;98(1):79–95.

    Article  CAS  PubMed  Google Scholar 

  37. Fanselow MS, Lester LS. A functional behavioristic approach to aversely motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. In: Bolles RC, Beecher MD, editors. Evolution and learning. Hillsdale: Lawrence Erlbaum Associates; 1988. pp. 185–212.

    Google Scholar 

  38. LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci. 1990;10(4):1062–9.

    CAS  PubMed  Google Scholar 

  39. Gozzi A, Jain A, Giovannelli A, Giovanelli A, Bertollini C, Crestan V, Schwarz AJ, Tsetsenis T, Ragozzino D, Gross CT, Bifone A. A neural switch for active and passive fear. Neuron. 2010;67(4):656–66.

    Article  CAS  PubMed  Google Scholar 

  40. Kim JJ, Jung MW. Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev. 2006;30(2):188–202.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33(1):56–72.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Makkar SR, Zhang SQ, Cranney J. Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology. 2010;35(8):1625–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sotres-Bayon F, Quirk GJ. Prefrontal control of fear: more than just extinction. Curr Opin Neurobiol. 2010;20(2):231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johansen JP, Cain CK, Ostroff LE, LeDoux JE. Molecular mechanisms of fear learning and memory. Cell. 2011;147(3):509–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amaral DG, Insausti R. Retrograde transport of D-(3H)-aspartate injected into the monkey amygdaloid complex. Exp Brain Res. 1992;88(2):375–88.

    Article  CAS  PubMed  Google Scholar 

  46. Rogan MT, LeDoux JE. LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron. 1995;15(1):127–36.

    Article  CAS  PubMed  Google Scholar 

  47. Rogan MT, Stäubli UV, LeDoux JE. Fear conditioning induces associative long-term potentiation in the amygdala. Nature. 1997;390(6660):604–7.

    Article  CAS  PubMed  Google Scholar 

  48. Ciocchi S, Herry C, Grenier F, Wolff SBE, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Müller C, Lüthi A. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature. 2010;468(7321):277–82.

    Article  CAS  PubMed  Google Scholar 

  49. LeDoux JE, Iwata J, Cicchetti P, Reis DJ. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci. 1988;8(7):2517–29.

    CAS  PubMed  Google Scholar 

  50. Amorapanth P, LeDoux JE, Nader K. Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nat Neurosci. 2000;3(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  51. Nader K, Majidishad P, Amorapanth P, LeDoux JE. Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learn Mem. 2001;8(3):156–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laviolette SR, Lipski WJ, Grace AA. A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J Neurosci. 2005;25(26):6066–75.

    Article  CAS  PubMed  Google Scholar 

  53. Herry C, Trifilieff P, Micheau J, Lüthi A, Mons N. Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala. Eur J Neurosci. 2006;24(1):261–9.

    Article  PubMed  Google Scholar 

  54. Kim J, Lee S, Park K, Hong I, Song B, Son G, Park H, Kim WR, Park E, Choe HK, Kim H, Lee C, Sun W, Kim K, Shin KS, Choi S. Amygdala depotentiation and fear extinction. Proc Natl Acad Sci U S A. 2007;104(52):20955–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sotres-Bayon F, Bush DEA, LeDoux JE. Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology. 2007;32(9):1929–40.

    Article  CAS  PubMed  Google Scholar 

  56. Morgan MA, Romanski LM, LeDoux JE. Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett. 1993;163(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  57. Quirk GJ, Russo GK, Barron JL, Lebron K. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci. 2000;20(16):6225–31.

    CAS  PubMed  Google Scholar 

  58. Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature. 2002;420(6911):70–4.

    Article  CAS  PubMed  Google Scholar 

  59. Quirk GJ, Likhtik E, Pelletier JG, Paré D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci. 2003;23(25):8800–7.

    CAS  PubMed  Google Scholar 

  60. Ji J, Maren S. Electrolytic lesions of the dorsal hippocampus disrupt renewal of conditional fear after extinction. Learn Mem. 2005;12(3):270–6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Herry C, Ciocchi S, Senn V, Demmou L, Müller C, Lüthi A. Switching on and off fear by distinct neuronal circuits. Nature. 2008;454(7204):600–6.

    Article  CAS  PubMed  Google Scholar 

  62. Estes WK, Skinner BF. Some quantitative properties of anxiety. J Exp Psychol. 1941;29(5):390–400.

    Article  Google Scholar 

  63. Sidman M. Classical avoidance without a warning stimulus. J Exp Anal Behav. 1962;5:97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mineka S. The role of fear in theories of avoidance learning, flooding, and extinction. Psychol Bull. 1979;86(5):985.

    Article  Google Scholar 

  65. Cain CK, LeDoux JE. Escape from fear: a detailed behavioral analysis of two atypical responses reinforced by CS termination. J Exp Psychol Anim Behav Process. 2007;33(4):451–63.

    Article  PubMed  Google Scholar 

  66. Choi J-S, Cain CK, LeDoux JE. The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learn Mem. 2010;17(3):139–47.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lázaro-Muñoz G, LeDoux JE, Cain CK. Sidman instrumental avoidance initially depends on lateral and basal amygdala and is constrained by central amygdala-mediated Pavlovian processes. Biol Psychiatry. 2010;67(12):1120–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sarter M, Markowitsch HJ. Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations. Behav Neurosci. 1985;99(2):342–80.

    Article  CAS  PubMed  Google Scholar 

  69. Steimer T, la Fleur S, Schulz PE. Neuroendocrine correlates of emotional reactivity and coping in male rats from the Roman high (RHA/Verh)-and low (RLA/Verh)-avoidance lines. Behav Genet. 1997;27(6):503–12.

    Article  CAS  PubMed  Google Scholar 

  70. Vicens-Costa E, Martinez-Membrives E, López-Aumatell R, Guitart-Masip M, Canete T, Blázquez G, Tobena A, Fernández-Teruel A. Two-way avoidance acquisition is negatively related to conditioned freezing and positively associated with startle reactions: a dissection of anxiety and fear in genetically heterogeneous rats. Physiol Behav. 2010;103(2):148–56

    Article  PubMed  CAS  Google Scholar 

  71. Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Tobeña A, Fernández-Teruel A. Coping style and stress hormone responses in genetically heterogeneous rats: comparison with the Roman rat strains. Behav Brain Res. 2012;228(1):203–10.

    Article  PubMed  CAS  Google Scholar 

  72. Price JL. Comparative aspects of amygdala connectivity. Ann N Y Acad Sci. 2003;985:50–8.

    Article  PubMed  Google Scholar 

  73. Schiller D, Delgado MR. Overlapping neural systems mediating extinction, reversal and regulation of fear. Trends Cogn Sci. 2010;14(6):268–76.

    Article  PubMed  Google Scholar 

  74. Delgado MR, Jou RL, Ledoux JE, Phelps EA. Avoiding negative outcomes: tracking the mechanisms of avoidance learning in humans during fear conditioning. Front Behav Neurosci. 2009;3:33.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li J, Schiller D, Schoenbaum G, Phelps EA, Daw ND. Differential roles of human striatum and amygdala in associative learning. Nat Neurosci. 2011;14(10):1250–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002;418(6897):530–4.

    Article  CAS  PubMed  Google Scholar 

  77. Medina JF, Repa JC, Mauk MD, LeDoux JE. Parallels between cerebellum- and amygdala-dependent conditioning. Nat Rev Neurosci. 2002;3(2):122–31.

    Article  CAS  PubMed  Google Scholar 

  78. Fanselow MS, Poulos AM. The neuroscience of mammalian associative learning. Annu Rev Psychol. 2005;56:207–34.

    Article  PubMed  Google Scholar 

  79. Cannich A, Wotjak CT, Kamprath K, Hermann H, Lutz B, Marsicano G. CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem. 2004;11(5):625–32.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Plendl W, Wotjak CT. Dissociation of within- and between-session extinction of conditioned fear. J Neurosci. 2010;30(14):4990–8.

    Article  CAS  PubMed  Google Scholar 

  81. Arenos JD, Musty RE, Bucci DJ. Blockade of cannabinoid CB1 receptors alters contextual learning and memory. Eur J Pharmacol. 2006;539(3):177–83.

    Article  CAS  PubMed  Google Scholar 

  82. Mikics E, Dombi T, Barsvári B, Varga B, Ledent C, Freund TF, Haller J. The effects of cannabinoids on contextual conditioned fear in CB1 knockout and CD1 mice. Behav Pharmacol. 2006;17(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  83. Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Böhme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science. 1999;283(5400):401–4.

    Article  CAS  PubMed  Google Scholar 

  84. Jacob W, Marsch R, Marsicano G, Lutz B, Wotjak CT. Cannabinoid CB1 receptor deficiency increases contextual fear memory under highly aversive conditions and long-term potentiation in vivo. Neurobiol Learn Mem. 2012;98(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  85. Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci. 2004;24(20):4787–95.

    Article  CAS  PubMed  Google Scholar 

  86. Pamplona FA, Prediger RDS, Pandolfo P, Takahashi RN. The cannabinoid receptor agonist WIN 55,212-2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology (Berl). 2006;188(4):641–9.

    Article  CAS  Google Scholar 

  87. Haller J, Mátyás F, Soproni K, Varga B, Barsy B, Németh B, Mikics E, Freund TF, Hájos N. Correlated species differences in the effects of cannabinoid ligands on anxiety and on GABAergic and glutamatergic synaptic transmission. Eur J Neurosci. 2007;25(8):2445–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bellocchio L, Soria-Gómez E, Quarta C, Metna-Laurent M, Cardinal P, Binder E, Cannich A, Delamarre A, Häring M, Martín-Fontecha M, Vega D, Leste-Lasserre T, Bartsch D, Monory K, Lutz B, Chaouloff F, Pagotto U, Guzman M, Cota D, Marsicano G. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade. Proc Natl Acad Sci U S A. 2013;110(12):4786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Finn DP, Beckett SRG, Richardson D, Kendall DA, Marsden CA, Chapman V. Evidence for differential modulation of conditioned aversion and fear-conditioned analgesia by CB1 receptors. Eur J Neurosci. 2004;20(3):848–52.

    Article  CAS  PubMed  Google Scholar 

  90. Finn DP, Jhaveri MD, Beckett SRG, Kendall DA, Marsden CA, Chapman V. Cannabinoids modulate ultrasound-induced aversive responses in rats. Psychopharmacology (Berl). 2004;172(1):41–51.

    Article  CAS  Google Scholar 

  91. Chhatwal JP, Davis M, Maguschak KA, Ressler KJ. Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology. 2005;30(3):516–24.

    Google Scholar 

  92. Niyuhire F, Varvel SA, Thorpe AJ, Stokes RJ, Wiley JL, Lichtman AH. The disruptive effects of the CB1 receptor antagonist rimonabant on extinction learning in mice are task-specific. Psychopharmacology (Berl). 2007;191(2):223–31.

    Article  CAS  Google Scholar 

  93. Hölter SM, Kallnik M, Wurst W, Marsicano G, Lutz B, Wotjak CT. Cannabinoid CB1 receptor is dispensable for memory extinction in an appetitively-motivated learning task. Eur J Pharmacol. 2005;510(1–2):69–74.

    Article  PubMed  CAS  Google Scholar 

  94. Harloe JP, Thorpe AJ, Lichtman AH. Differential endocannabinoid regulation of extinction in appetitive and aversive Barnes maze tasks. Learn Mem. 2008;15(11):806–9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O. Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl). 2002;159(4):379–87.

    Article  CAS  Google Scholar 

  96. Bura SA, Castañé A, Ledent C, Valverde O, Maldonado R. Genetic and pharmacological approaches to evaluate the interaction between the cannabinoid and cholinergic systems in cognitive processes. Br J Pharmacol. 2007;150(6):758–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kamprath K, Plendl W, Marsicano G, Deussing JM, Wurst W, Lutz B, Wotjak CT. Endocannabinoids mediate acute fear adaptation via glutamatergic neurons independently of corticotropin-releasing hormone signaling. Genes Brain Behav. 2009;8(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  98. Azad SC. Activation of the Cannabinoid Receptor Type 1 Decreases Glutamatergic and GABAergic Synaptic Transmission in the Lateral Amygdala of the Mouse. Learn Mem. 2003;10(2):116–28.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mansuy IM, Mayford M, Jacob B, Kandel ER, Bach ME. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell. 1998;92(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  100. Lin CH, Yeh SH, Lin CH, Lu KT, Leu TH, Chang WC, Gean PW. A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron. 2001;31(5):841–51.

    Article  CAS  PubMed  Google Scholar 

  101. Chhatwal JP, Gutman AR, Maguschak KA, Bowser ME, Yang Y, Davis M, Ressler KJ. Functional interactions between endocannabinoid and CCK neurotransmitter systems may be critical for extinction learning. Neuropsychopharmacology. 2009;34(2):509–21.

    Article  CAS  PubMed  Google Scholar 

  102. Kamprath K, Romo-Parra H, Häring M, Gaburro S, Doengi M, Lutz B, Pape H-C. Short-term adaptation of conditioned fear responses through endocannabinoid signaling in the central amygdala. Neuropsychopharmacology. 2011;36(3):652–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Laviolette SR, Grace AA. Cannabinoids potentiate emotional learning plasticity in neurons of the medial prefrontal cortex through basolateral amygdala inputs. J Neurosci. 2006;26(24):6458–68.

    Article  CAS  PubMed  Google Scholar 

  104. Tan H, Lauzon NM, Bishop SF, Bechard MA, Laviolette SR. Integrated cannabinoid CB1 receptor transmission within the amygdala-prefrontal cortical pathway modulates neuronal plasticity and emotional memory encoding. Cereb Cortex. 2010;20(6):1486–96.

    Article  PubMed  Google Scholar 

  105. Tan H, Lauzon NM, Bishop SF, Chi N, Bechard M, Laviolette SR. Cannabinoid transmission in the basolateral amygdala modulates fear memory formation via functional inputs to the prelimbic cortex. J Neurosci. 2011;31(14):5300–12.

    Article  CAS  PubMed  Google Scholar 

  106. Choi K, Le T, McGuire J, Xing G, Zhang L, Li H, Parker CC, Johnson LR, Ursano RJ. Expression pattern of the cannabinoid receptor genes in the frontal cortex of mood disorder patients and mice selectively bred for high and low fear. J Psychiatr Res. 2012;46(7):882–9.

    Article  PubMed  Google Scholar 

  107. Lisboa SF, Reis DG, da Silva AL, Corrêa FMA, Guimarães FS, Resstel LBM. Cannabinoid CB1 receptors in the medial prefrontal cortex modulate the expression of contextual fear conditioning. Int J Neuropsychopharmacol. 2010;13(9):1163–73.

    Article  CAS  PubMed  Google Scholar 

  108. Kuhnert S, Meyer C, Koch M. Involvement of cannabinoid receptors in the amygdala and prefrontal cortex of rats in fear learning, consolidation, retrieval and extinction. Behav Brain Res. 2013;250:274–84.

    Article  CAS  PubMed  Google Scholar 

  109. Do Monte FH, Souza RR, Bitencourt RM, Kroon JA, Takahashi RN. Infusion of cannabidiol into infralimbic cortex facilitates fear extinction via CB1 receptors. Behav Brain Res. 2013;250:23–7.

    Article  CAS  PubMed  Google Scholar 

  110. De Oliveira Alvares L, Pasqualini Genro B, Diehl F, Molina VA, Quillfeldt JA. Opposite action of hippocampal CB1 receptors in memory reconsolidation and extinction. Neuroscience. 2008;154(4):1648–55.

    Article  CAS  PubMed  Google Scholar 

  111. Lin Q-S, Yang Q, Liu D-D, Sun Z, Dang H, Liang J, Wang Y-X, Chen J, Li S-T. Hippocampal endocannabinoids play an important role in induction of long-term potentiation and regulation of contextual fear memory formation. Brain Res Bull. 2011;86(3–4):139–45.

    Article  CAS  PubMed  Google Scholar 

  112. Carrive P, Leung P, Harris J, Paxinos G. Conditioned fear to context is associated with increased Fos expression in the caudal ventrolateral region of the midbrain periaqueductal gray. Neuroscience. 1997;78(1):165–77.

    Article  CAS  PubMed  Google Scholar 

  113. Resstel LBM, Lisboa SF, Aguiar DC, Corrêa FMA, Guimarães FS. Activation of CB1 cannabinoid receptors in the dorsolateral periaqueductal gray reduces the expression of contextual fear conditioning in rats. Psychopharmacology (Berl). 2008;198(3):405–11.

    Article  CAS  Google Scholar 

  114. Mitchell VA, Jeong H-J, Drew GM, Vaughan CW. Cholecystokinin exerts an effect via the endocannabinoid system to inhibit GABAergic transmission in midbrain periaqueductal gray. Neuropsychopharmacology. 2011;36(9):1801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Terzian AL, Drago F, Wotjak CT, Micale V. The Dopamine and Cannabinoid Interaction in the Modulation of Emotions and Cognition: Assessing the Role of Cannabinoid CB1 Receptor in Neurons Expressing Dopamine D1 Receptors. Front Behav Neurosci. 2011;5:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dubreucq S, Kambire S, Conforzi M, Metna-Laurent M, Cannich A, Soria-Gomez E, Richard E, Marsicano G, Chaouloff F. Cannabinoid type 1 receptors located on single-minded 1-expressing neurons control emotional behaviors. Neuroscience. 2012;204:230–44.

    Article  CAS  PubMed  Google Scholar 

  117. Dubreucq S, Matias I, Cardinal P, Häring M, Lutz B, Marsicano G, Chaouloff F. Genetic dissection of the role of cannabinoid type-1 receptors in the emotional consequences of repeated social stress in mice. Neuropsychopharmacology. 2012;37(8):1885–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Metna-Laurent M, Soria-Gómez E, Verrier D, Conforzi M, Jégo P, Lafenêtre P, Marsicano G. Bimodal control of fear-coping strategies by CB1 cannabinoid receptors. J Neurosci. 2012;32(21):7109–18.

    Article  CAS  PubMed  Google Scholar 

  119. Bellocchio L, Lafenêtre P, Cannich A, Cota D, Puente N, Grandes P, Chaouloff F, Piazza PV, Marsicano G. Bimodal control of stimulated food intake by the endocannabinoid system. Nat Neurosci. 2010;13(3):281–3.

    Article  CAS  PubMed  Google Scholar 

  120. Rey AA, Purrio M, Viveros M-P, Lutz B. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology. 2012;37(12):2624–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Blanchard RJ, Blanchard DC. Antipredator defensive behaviors in a visible burrow system. J Comp Psychol. 1989;103(1):70–82.

    Article  CAS  PubMed  Google Scholar 

  122. McNaughton N, Corr PJ. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci Biobehav Rev. 2004;28(3):285–305.

    Article  PubMed  Google Scholar 

  123. Blanchard DC, Griebel G, Pobbe R, Blanchard RJ. Risk assessment as an evolved threat detection and analysis process. Neurosci Biobehav Rev. 2010;35(4):991–8.

    Article  PubMed  Google Scholar 

  124. Blanchard RJ, Blanchard DC, Rodgers J, Weiss SM. The characterization and modelling of antipredator defensive behavior. Neurosci Biobehav Rev. 1990;14(4):463–72.

    Article  CAS  PubMed  Google Scholar 

  125. Dielenberg RA, Carrive P, McGregor IS. The cardiovascular and behavioral response to cat odor in rats: unconditioned and conditioned effects. Brain Res. 2001;897(1–2):228–37.

    Article  CAS  PubMed  Google Scholar 

  126. Platel A, Porsolt RD. Habituation of exploratory activity in mice: a screening test for memory enhancing drugs. Psychopharmacology (Berl). 1982;78(4):346–52.

    Article  CAS  Google Scholar 

  127. Ursin H, Olff M. Psychobiology of coping and defence strategies. NeuropsychoBiology. 1993;28(1–2):66–71.

    Article  CAS  PubMed  Google Scholar 

  128. Lehner M, Taracha E, Skórzewska A, Turzynska D, Sobolewska A, Maciejak P, Szyndler J, Hamed A, Bidzinski A, Wislowska-Stanek A, others. Expression of c-Fos and CRF in the brains of rats differing in the strength of a fear response. Behav Brain Res. 2008;188(1):154–67.

    Article  CAS  PubMed  Google Scholar 

  129. Martin JR, Oettinger R, Driscoll P, Buzzi R, Bättig K. Effects of chlordiazepoxide and imipramine on maze patrolling within two different maze configurations by psychogenetically selected lines of rats. Psychopharmacology (Berl). 1982;78(1):58–62.

    Article  CAS  Google Scholar 

  130. Aguilar R, Gil L, Flint J, Gray JA, Dawson GR, Driscoll P, Giménez-Llort L, Escorihuela RM, Fernández-Teruel A, Tobeña A. Learned fear, emotional reactivity and fear of heights: a factor analytic map from a large F(2) intercross of Roman rat strains. Brain Res Bull. 2002;57(1):17–26.

    Article  PubMed  Google Scholar 

  131. Steimer T, Driscoll P Divergent stress responses and coping styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects. Stress Amst Neth. 2003;6(2):87–100.

    Article  CAS  Google Scholar 

  132. Mowrer OH, Lamoreaux RR. Fear as an intervening variable in avoidance conditioning. J Comp Psychol. 1946;39:29–50.

    Article  CAS  PubMed  Google Scholar 

  133. Haller J, Goldberg SR, Pelczer KG, Aliczki M, Panlilio LV. The effects of anandamide signaling enhanced by the FAAH inhibitor URB597 on coping styles in rats. Psychopharmacology (Berl). 2013;230(3):353–62.

    Article  CAS  Google Scholar 

  134. Haller J, Aliczki M, Pelczer KG, Spitzer K, Balogh Z, Kantor S. Effects of the fatty acid amide hydrolase inhibitor URB597 on coping behavior under challenging conditions in mice. Psychopharmacology (Berl). 2014;231(3):593–601.

    Article  CAS  Google Scholar 

  135. Gunduz-Cinar O, Hill MN, McEwen BS, Holmes A. Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol Sci. 2013;34(11):637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lal H, Forster MJ. Flumazenil improves active avoidance performance in aging NZB/BlNJ and C57BL/6NNia mice. Pharmacol Biochem Behav. 1990;35(3):747–50.

    Article  CAS  PubMed  Google Scholar 

  137. Fernández-Teruel A, Escorihuela RM, Boix F, Tobena A. Effects of different handling-stimulation procedures and benzodiazepines on two-way active avoidance acquisition in rats. Pharmacol Res. 1991;24(3):273–82.

    Article  PubMed  Google Scholar 

  138. Escorihuela RM, Fernández-Teruel A, Zapata A, Núñez JF, Tobeña A. Flumazenil prevents the anxiolytic effects of diazepam, alprazolam and adinazolam on the early acquisition of two-way active avoidance. Pharmacol Res. 1993;28(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  139. Ghiasvand M, Rezayof A, Zarrindast MR, Ahmadi S. Activation of cannabinoid CB1 receptors in the central amygdala impairs inhibitory avoidance memory consolidation via NMDA receptors. Neurobiol Learn Mem. 2011;96(2):333–8.

    Article  CAS  PubMed  Google Scholar 

  140. Häring M, Grieb M, Monory K, Lutz B, Moreira FA. Cannabinoid CB1 receptor in the modulation of stress coping behavior in mice: the role of serotonin and different forebrain neuronal subpopulations. Neuropharmacology. 2013;65:83–9.

    Article  PubMed  CAS  Google Scholar 

  141. Beninger RJ, MacLennan AJ, Pinel JP. The use of conditioned defensive burying to test the effects of pimozide on associative learning. Pharmacol Biochem Behav. 1980;12(3):445–8.

    Article  CAS  PubMed  Google Scholar 

  142. Boersma GJ, Scheurink AJW, Wielinga PY, Steimer TJ, Benthem L. The passive coping Roman Low Avoidance rat, a non-obese rat model for insulin resistance. Physiol Behav. 2009;97(3–4):353–8.

    Article  CAS  PubMed  Google Scholar 

  143. Degroot A, Nomikos GG. Genetic deletion and pharmacological blockade of CB1 receptors modulates anxiety in the shock-probe burying test. Eur J Neurosci. 2004;20(4):1059–64.

    Article  PubMed  Google Scholar 

  144. Van Laere K, Goffin K, Bormans G, Casteels C, Mortelmans L, de Hoon J, Grachev I, Vandenbulcke M, Pieters G. Relationship of type 1 cannabinoid receptor availability in the human brain to novelty-seeking temperament. Arch Gen Psychiatry. 2009;66(2):196–204.

    Article  PubMed  Google Scholar 

  145. Rabinak CA, Angstadt M, Sripada CS, Abelson JL, Liberzon I, Milad MR, Phan KL. Cannabinoid facilitation of fear extinction memory recall in humans. Neuropharmacology. 2013;64:396–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Katona I, Sperlágh B, Maglóczky Z, Sántha E, Köfalvi A, Czirják S, Mackie K, Vizi ES, Freund TF. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience. 2000;100(4):797–804.

    Article  CAS  PubMed  Google Scholar 

  147. Kawamura Y, Fukaya M, Maejima T, Yoshida T, Miura E, Watanabe M, Ohno-Shosaku T, Kano M. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci. 2006;26(11):2991–3001.

    Article  CAS  PubMed  Google Scholar 

  148. Monory K, Massa F, Egertová M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M. The Endocannabinoid System Controls Key Epileptogenic Circuits in the Hippocampus. Neuron. 2006;51(4):455–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lafenêtre P, Chaouloff F, Marsicano G. Bidirectional regulation of novelty-induced behavioral inhibition by the endocannabinoid system. Neuropharmacology. 2009;57(7–8):715–21.

    Article  PubMed  CAS  Google Scholar 

  150. Das RK, Kamboj SK, Ramadas M, Yogan K, Gupta V, Redman E, Curran HV, Morgan CJA. Cannabidiol enhances consolidation of explicit fear extinction in humans. Psychopharmacology (Berl). 2013;226(4):781–92.

    Article  CAS  Google Scholar 

  151. Klumpers LE, Cole DM, Khalili-Mahani N, Soeter RP, Te Beek ET, Rombouts SARB, van Gerven JMA. Manipulating brain connectivity with δ9-tetrahydrocannabinol: a pharmacological resting state FMRI study. NeuroImage. 2012;63(3):1701–11.

    Article  CAS  PubMed  Google Scholar 

  152. Heitland I, Klumpers F, Oosting RS, Evers DJJ, Leon Kenemans J, Baas JMP. Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1. Transl Psychiatry. 2012;2:e162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Stern CAJ, Gazarini L, Takahashi RN, Guimarães FS, Bertoglio LJ. On disruption of fear memory by reconsolidation blockade: evidence from cannabidiol treatment. Neuropsychopharmacology. 2012;37(9):2132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Soria-Gómez PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Metna-Laurent, M., Marsicano, G., Soria-Gómez, E. (2015). Cannabinoid Control of Fear Responses. In: Campolongo, P., Fattore, L. (eds) Cannabinoid Modulation of Emotion, Memory, and Motivation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2294-9_6

Download citation

Publish with us

Policies and ethics