Skip to main content

Extracting Quantal Properties of Transmission at Central Synapses

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 113))

Abstract

Chemical synapses enable neurons to communicate rapidly, process and filter signals and to store information. However, studying their functional properties is difficult because synaptic connections typically consist of multiple synaptic contacts that release vesicles stochastically and exhibit time-dependent behavior. Moreover, most central synapses are small and inaccessible to direct measurements. Estimation of synaptic properties from postsynaptic currents or potentials is complicated by the presence of nonuniform release probability and nonuniform quantal properties. The presence of multivesicular release and postsynaptic receptor saturation at some synapses can also complicate the interpretation of quantal parameters. Multiple-probability fluctuation analysis (MPFA; also known as variance-mean analysis) is a method that has been developed for estimating synaptic parameters from the variance and mean amplitude of synaptic responses recorded at different release probabilities. This statistical approach, which incorporates nonuniform synaptic properties, has become widely used for studying synaptic transmission. In this chapter, we describe the statistical models used to extract quantal parameters and discuss their interpretation when applying MPFA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fatt P, Katz B (1952) Spontaneous subthreshold activity at motor nerve endings. J Physiol 117:109–128

    CAS  PubMed  PubMed Central  Google Scholar 

  2. del Castillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124:560–573

    Article  PubMed Central  Google Scholar 

  3. Fatt P, Katz B (1950) Some observations on biological noise. Nature 166:597–598

    Article  CAS  PubMed  Google Scholar 

  4. De Robertis E, Bennett HS (1955) Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol 1:47

    Article  PubMed Central  Google Scholar 

  5. Katz B (1969) The release of neural transmitter substances. Liverpool University Press, Liverpool

    Google Scholar 

  6. Kuno M (1964) Quantal components of excitatory synaptic potentials in spinal motoneurones. J Physiol 175:81–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malinow R, Tsien RW (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346:177–180

    Article  CAS  PubMed  Google Scholar 

  8. Bekkers JM, Stevens CF (1990) Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346:724–729

    Article  CAS  PubMed  Google Scholar 

  9. Larkman A, Stratford K, Jack J (1991) Quantal analysis of excitatory synaptic action and depression in hippocampal slices. Nature 350:344–347

    Article  CAS  PubMed  Google Scholar 

  10. Edwards F (1991) Neurobiology. LTP is a long term problem. Nature 350:271–272

    Article  CAS  PubMed  Google Scholar 

  11. Kullmann DM, Nicoll RA (1992) Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature 357:240–244

    Article  CAS  PubMed  Google Scholar 

  12. Walmsley B, Edwards FR, Tracey DJ (1988) Nonuniform release probabilities underlie quantal synaptic transmission at a mammalian excitatory central synapse. J Neurophysiol 60:889–908

    CAS  PubMed  Google Scholar 

  13. Rosenmund C, Clements JD, Westbrook GL (1993) Nonuniform probability of glutamate release at a hippocampal synapse. Science 262:754–757

    Article  CAS  PubMed  Google Scholar 

  14. Walmsley B (1995) Interpretation of “quantal” peaks in distributions of evoked synaptic transmission at central synapses. Proc Biol Sci 261:245–250

    Article  CAS  PubMed  Google Scholar 

  15. Sigworth FJ (1980) The variance of sodium current fluctuations at the node of Ranvier. J Physiol 307:97–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Traynelis SF, Silver RA, Cull-Candy SG (1993) Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 11:279–289

    Article  CAS  PubMed  Google Scholar 

  17. Silver RA, Cull-Candy SG, Takahashi T (1996) Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J Physiol 494(Pt 1):231–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Silver RA, Momiyama A, Cull-Candy SG (1998) Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses. J Physiol 510(Pt 3):881–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reid CA, Clements JD (1999) Postsynaptic expression of long-term potentiation in the rat dentate gyrus demonstrated by variance-mean analysis. J Physiol 518(Pt 1):121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clements JD, Silver RA (2000) Unveiling synaptic plasticity: a new graphical and analytical approach. Trends Neurosci 23:105–113

    Article  CAS  PubMed  Google Scholar 

  21. Clamann HP, Mathis J, Lüscher HR (1989) Variance analysis of excitatory postsynaptic potentials in cat spinal motoneurons during posttetanic potentiation. J Neurophysiol 61:403–416

    CAS  PubMed  Google Scholar 

  22. Sargent PB, Saviane C, Nielsen TA et al (2005) Rapid vesicular release, quantal variability, and spillover contribute to the precision and reliability of transmission at a glomerular synapse. J Neurosci 25:8173–8187

    Article  CAS  PubMed  Google Scholar 

  23. Lanore F, Labrousse VF, Szabo Z et al (2012) Deficits in morphofunctional maturation of hippocampal mossy fiber synapses in a mouse model of intellectual disability. J Neurosci 32:17882–17893

    Article  CAS  PubMed  Google Scholar 

  24. Meyer AC, Neher E, Schneggenburger R (2001) Estimation of quantal size and number of functional active zones at the calyx of held synapse by nonstationary EPSC variance analysis. J Neurosci 21:7889–7900

    CAS  PubMed  Google Scholar 

  25. Saviane C, Silver RA (2006) Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439:983–987

    Article  CAS  PubMed  Google Scholar 

  26. Hallermann S, Fejtova A, Schmidt H et al (2010) Bassoon speeds vesicle reloading at a central excitatory synapse. Neuron 68:710–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scheuss V, Neher E (2001) Estimating synaptic parameters from mean, variance, and covariance in trains of synaptic responses. Biophys J 81:1970–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neher E, Sakaba T (2003) Combining deconvolution and fluctuation analysis to determine quantal parameters and release rates. J Neurosci Methods 130:143–157

    Article  PubMed  Google Scholar 

  29. Oleskevich S, Clements J, Walmsley B (2000) Release probability modulates short-term plasticity at a rat giant terminal. J Physiol 524(Pt 2):513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biró AA, Holderith NB, Nusser Z (2005) Quantal size is independent of the release probability at hippocampal excitatory synapses. J Neurosci 25:223–232

    Article  PubMed  Google Scholar 

  31. Biró AA, Holderith NB, Nusser Z (2006) Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. J Neurosci 26:12487–12496

    Article  PubMed  PubMed Central  Google Scholar 

  32. Humeau Y, Doussau F, Popoff MR et al (2007) Fast changes in the functional status of release sites during short-term plasticity: involvement of a frequency-dependent bypass of Rac at Aplysia synapses. J Physiol 583:983–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Valera AM, Doussau F, Poulain B et al (2012) Adaptation of granule cell to purkinje cell synapses to high-frequency transmission. J Neurosci 32:3267–3280

    Article  CAS  PubMed  Google Scholar 

  34. Sola E, Prestori F, Rossi P et al (2004) Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. J Physiol 557:843–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fourcaudot E, Gambino F, Humeau Y et al (2008) cAMP/PKA signaling and RIM1alpha mediate presynaptic LTP in the lateral amygdala. Proc Natl Acad Sci 105:15130–15135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murthy VN, Sejnowski TJ, Stevens CF (1997) Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18:599–612

    Article  CAS  PubMed  Google Scholar 

  37. Bekkers JM, Richerson GB, Stevens CF (1990) Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proc Natl Acad Sci 87:5359–5362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Silver RA, Traynelis SF, Cull-Candy SG (1992) Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355:163–166

    Article  CAS  PubMed  Google Scholar 

  39. Frerking M, Wilson M (1996) Effects of variance in mini amplitude on stimulus-evoked release: a comparison of two models. Biophys J 70:2078–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borst JG, Lodder JC, Kits KS (1994) Large amplitude variability of GABAergic IPSCs in melanotrophs from Xenopus laevis: evidence that quantal size differs between synapses. J Neurophysiol 71:639–655

    CAS  PubMed  Google Scholar 

  41. Silver RA (2003) Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations. J Neurosci Methods 130:127–141

    Article  PubMed  Google Scholar 

  42. Branco T, Staras K, Darcy KJ et al (2008) Local dendritic activity sets release probability at hippocampal synapses. Neuron 59:475–485

    Article  CAS  PubMed  Google Scholar 

  43. Holderith N, Lörincz A, Katona G et al (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15:988–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wadiche JI, Jahr CE (2001) Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32:301–313

    Article  CAS  PubMed  Google Scholar 

  45. Christie JM, Jahr CE (2006) Multivesicular release at Schaffer collateral-CA1 hippocampal synapses. J Neurosci 26:210–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Foster KA, Regehr WG (2004) Variance-mean analysis in the presence of a rapid antagonist indicates vesicle depletion underlies depression at the climbing fiber synapse. Neuron 43:119–131

    Article  CAS  PubMed  Google Scholar 

  47. DiGregorio DA, Nusser Z, Silver RA (2002) Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35:521–533

    Article  CAS  PubMed  Google Scholar 

  48. Barbour B, Hausser M (1997) Intersynaptic diffusion of neurotransmitter. Trends Neurosci 20:377–384

    Article  CAS  PubMed  Google Scholar 

  49. Sakaba T, Schneggenburger R, Neher E (2002) Estimation of quantal parameters at the calyx of Held synapse. Neurosci Res 44:343–356

    Article  PubMed  Google Scholar 

  50. Minneci F, Kanichay RT, Silver RA (2012) Estimation of the time course of neurotransmitter release at central synapses from the first latency of postsynaptic currents. J Neurosci Methods 205:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vere Jones D (1966) Simple stochastic models for the release of quanta of transmitter from a nerve terminal. Aust J Stat 8:53–63

    Article  Google Scholar 

  52. Quastel DM (1997) The binomial model in fluctuation analysis of quantal neurotransmitter release. Biophys J 72:728–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wong AYC, Graham BP, Billups B et al (2003) Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. J Neurosci 23:4868–4877

    CAS  PubMed  Google Scholar 

  54. Spruston N, Jaffe DB, Williams SH et al (1993) Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. J Neurophysiol 70:781–802

    CAS  PubMed  Google Scholar 

  55. Bar-Yehuda D, Korngreen A (2008) Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances. J Neurophysiol 99:1127–1136

    Article  PubMed  Google Scholar 

  56. Silver RA, Lubke J, Sakmann B et al (2003) High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302:1981–1984

    Article  CAS  PubMed  Google Scholar 

  57. Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617–644

    Google Scholar 

  58. Saviane C, Silver RA (2006) Errors in the estimation of the variance: implications for multiple-probability fluctuation analysis. J Neurosci Methods 153:250–260

    Article  PubMed  Google Scholar 

  59. Redman S (1990) Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol Rev 70:165–198

    CAS  PubMed  Google Scholar 

  60. Stricker C, Field AC, Redman SJ (1996) Statistical analysis of amplitude fluctuations in EPSCs evoked in rat CA1 pyramidal neurones in vitro. J Physiol 490(Pt 2):419–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. Neural Comput 10:821–835

    Article  CAS  PubMed  Google Scholar 

  62. Scheuss V, Neher E, Schneggenburger R (2002) Separation of presynaptic and postsynaptic contributions to depression by covariance analysis of successive EPSCs at the calyx of held synapse. J Neurosci 22:728–739

    CAS  PubMed  Google Scholar 

  63. Sakaba T, Neher E (2001) Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. J Neurosci 21:462–476

    CAS  PubMed  Google Scholar 

  64. Saviane C, Silver RA (2007) Estimation of quantal parameters with multiple-probability fluctuation analysis. Methods Mol Biol 403:303–317

    Article  CAS  PubMed  Google Scholar 

  65. Turner DA, West M (1993) Bayesian analysis of mixtures applied to post-synaptic potential fluctuations. J Neurosci Methods 47:1–21

    Article  CAS  PubMed  Google Scholar 

  66. Bhumbra GS, Beato M (2013) Reliable evaluation of the quantal determinants of synaptic efficacy using Bayesian analysis. J Neurophysiol 109:603–620

    Article  CAS  PubMed  Google Scholar 

  67. Oertner TG, Sabatini BL, Nimchinsky EA et al (2002) Facilitation at single synapses probed with optical quantal analysis. Nat Neurosci 5:657–664

    CAS  PubMed  Google Scholar 

  68. Yuste R, Majewska A, Cash SS et al (1999) Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci 19:1976–1987

    CAS  PubMed  Google Scholar 

  69. Emptage NJ, Reid CA, Fine A et al (2003) Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron 38:797–804

    Article  CAS  PubMed  Google Scholar 

  70. Sylantyev S, Jensen TP, Ross RA et al (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci 110:5193–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marvin JS, Borghuis BG, Tian L et al (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10:162–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kirkby PA, Srinivas Nadella KMN, Silver RA (2010) A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Opt Express 18:13721–13745

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fernández-Alfonso T, Nadella KMNS, Iacaruso MF et al (2014) Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope. J Neurosci Methods 222:69–81

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rothman JS, Silver RA (2014) Data-driven modeling of synaptic transmission and integration. Prog Mol Biol Transl Sci 123:305–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Antoine Valera for comments on the manuscript. FL is supported by an IEF Marie Curie fellowship (FP7) and RAS holds a Wellcome Trust Principal Research Fellowship and an ERC Advanced Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Angus Silver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lanore, F., Silver, R.A. (2016). Extracting Quantal Properties of Transmission at Central Synapses. In: Korngreen, A. (eds) Advanced Patch-Clamp Analysis for Neuroscientists. Neuromethods, vol 113. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3411-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3411-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3409-6

  • Online ISBN: 978-1-4939-3411-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics