Skip to main content

Species Tree Estimation from Genome-Wide Data with guenomu

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1525))

Abstract

The history of particular genes and that of the species that carry them can be different for a variety of reasons. In particular, gene trees and species trees can differ due to well-known evolutionary processes such as gene duplication and loss, lateral gene transfer, or incomplete lineage sorting. Species tree reconstruction methods have been developed to take this incongruence into account; these can be divided grossly into supertree and supermatrix approaches. Here we introduce a new Bayesian hierarchical model that we have recently developed and implemented in the program guenomu. The new model considers multiple sources of gene tree/species tree disagreement. Guenomu takes as input posterior distributions of unrooted gene tree topologies for multiple gene families, in order to estimate the posterior distribution of rooted species tree topologies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rannala B, Yang Z (2008) Phylogenetic inference using whole genomes. Annu Rev Genomics Hum Genet 9:217–231

    Article  CAS  PubMed  Google Scholar 

  2. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown JR, Doolittle WF (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61:456–502

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fitz-Gibbon ST, House CH (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27:4218–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Snel B, Bork P, Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21:108–110

    Article  CAS  PubMed  Google Scholar 

  6. Fukami-Kobayashi K, Minezaki Y, Tateno Y, Nishikawa K (2007) A tree of life based on protein domain organizations. Mol Biol Evol 24:1181–1189

    Article  CAS  PubMed  Google Scholar 

  7. Grishin NV, Wolf YI, Koonin EV (2000) From complete genomes to measures of substitution rate variability within and between proteins. Genome Res 10:991–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clarke GDP, Beiko RG, Ragan MA, Charlebois RL (2002) Inferring genome trees by using a filter to eliminate phylogenetically discordant sequences and a distance matrix based on mean normalized BLASTP scores. J Bacteriol 184:2072–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Housworth EA, Postlethwait J (2002) Measures of synteny conservation between species pairs. Genetics 162:441–448

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin Y, Moret BME (2008) Estimating true evolutionary distances under the DCJ model. Bioinformatics 24:i114–i122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gordon A (1986) Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves. J Classif 348:335–348

    Article  Google Scholar 

  12. Ragan MA (1992) Phylogenetic inference based on matrix representation of trees. Mol Phylogenet Evol 1:53–58

    Article  CAS  PubMed  Google Scholar 

  13. Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst Zool 38:7–25

    Article  Google Scholar 

  14. de Queiroz A, Gatesy J (2007) The supermatrix approach to systematics. Trends Ecol Evol 22:34–41

    Article  PubMed  Google Scholar 

  15. Helmkamp LJ, Jewett EM, Rosenberg NA (2012) Improvements to a class of distance matrix methods for inferring species trees from gene trees. J Comput Biol 19:632–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Slowinksi J, Page RDM (1999) How should species trees be inferred from molecular sequence data? Syst Biol 48:814–825

    Article  Google Scholar 

  17. Chaudhary R, Bansal MS, Wehe A, Fernández-Baca D, Eulenstein O (2010) iGTP: a software package for large-scale gene tree parsimony analysis. BMC Bioinformatics 11:574

    Article  PubMed  PubMed Central  Google Scholar 

  18. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  19. Chaudhary R, Boussau B, Burleigh JG, Fernandez-Baca D (2014) Assessing approaches for inferring species trees from multi-copy genes. Syst Biol 64:325–339

    Article  PubMed  Google Scholar 

  20. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    Article  CAS  PubMed  Google Scholar 

  21. Liu L, Pearl DK (2007) Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst Biol 56:504–514

    Article  CAS  PubMed  Google Scholar 

  22. Akerborg O, Sennblad B, Arvestad L, Lagergren J (2009) Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci U S A 106:5714–5719

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boussau B, Szöll GJ, Duret L, Gouy M, Tannier E, Daubin V (2013) Genome-scale coestimation of species and gene trees. Genome Res 23:323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Oliveira Martins L, Mallo D, Posada D (2014) A Bayesian supertree model for genome-wide species tree reconstruction. Syst Biol 65(3):397–416. doi:10.1093/sysbio/syu082

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288

    Article  CAS  PubMed  Google Scholar 

  27. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 17. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rubenthaler S, Rydén T, Wiktorsson M (2009) Fast simulated annealing in rd with an application to maximum likelihood estimation in state-space models. Stoch Proc Appl 119:1912–1931

    Article  Google Scholar 

  29. Mossel E, Roch S (2008) Incomplete lineage sorting: consistent phylogeny estimation from multiple loci. IEEE/ACM Trans Comput Biol Bioinf 7:166–171

    Article  Google Scholar 

  30. Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30

    Article  PubMed  Google Scholar 

  31. Liu L, Yu L, Pearl DK, Edwards SV (2009) Estimating species phylogenies using coalescence times among sequences. Syst Biol 58:468–477

    Article  CAS  PubMed  Google Scholar 

  32. Chaudhary R, Fernández-Baca D, Burleigh JG (2015) MulRF: a software package for phylogenetic analysis using multi-copy gene trees. Bioinformatics 31:432–433

    Article  CAS  PubMed  Google Scholar 

  33. Nye TMW, Liò P, Gilks WR (2006) A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22:117–119

    Article  CAS  PubMed  Google Scholar 

  34. de Oliveira Martins L, Leal É, Kishino H (2008) Phylogenetic detection of recombination with a Bayesian prior on the distance between trees. PLoS One 3:e2651

    Article  PubMed Central  Google Scholar 

  35. Whidden C, Zeh N, Beiko RG (2014) Supertrees based on the subtree prune-and-regraft distance. Syst Biol 63:566–581

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rambaut A, Suchard MA, Xie D, Drummond A (2013) Tracer v1.5. Available at http://beast.bio.ed.ac.uk/tracer

  37. Plummer M, Best N, Cowles K, Vines K (2006) Coda: convergence diagnosis and output analysis for mcmc. R News 6:7–11

    Google Scholar 

  38. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  39. Sukumaran J, Holder MT (2010) DendroPy: a python library for phylogenetic computing. Bioinformatics 26:1569–1571

    Article  CAS  PubMed  Google Scholar 

  40. Song S, Liu L, Edwards SV, Wu S (2012) Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci U S A 109:14942–14947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo de Oliveira Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Oliveira Martins, L., Posada, D. (2017). Species Tree Estimation from Genome-Wide Data with guenomu. In: Keith, J. (eds) Bioinformatics. Methods in Molecular Biology, vol 1525. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6622-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6622-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6620-2

  • Online ISBN: 978-1-4939-6622-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics