Skip to main content

Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo

  • Protocol
Super-Resolution Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1663))

Abstract

The advent of super-resolution microscopy offers to bridge the gap between electron and light microscopy. It has opened up the possibility of visualizing cellular structures and dynamic signaling events on the “mesoscale” well below the classic diffraction barrier of light microscopy (10–200 nm), while essentially retaining the advantages of fluorescence microscopy concerning multicolor labeling, detection sensitivity, signal contrast, live-cell imaging, and temporal resolution.

From among the new super-resolution techniques, STED microscopy stands out as a laser-scanning imaging modality, which enables nanoscale volume-metric imaging of cellular morphology. In combination with two-photon (2P) excitation, STED microscopy facilitates the visualization of the highly complex and dynamic morphology of neurons and glia cells deep inside living brain slices and in the intact brain in vivo.

Here, we present an overview of the principles and implementation of 2P-STED microscopy in vivo, providing the neurobiological context and motivation for this technique, and illustrating its capacity by showing images of dendritic spines and microglial processes obtained from living brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658. doi:10.1038/nrn2699. nrn2699 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Tonnesen J, Nägerl UV (2016) Dendritic spines as tunable regulators of synaptic signals. Front Psych 7:101. doi:10.3389/fpsyt.2016.00101

    Google Scholar 

  3. Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18. doi:10.1016/j.neuron.2012.12.023

    Article  CAS  PubMed  Google Scholar 

  4. Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183(4675):1592–1593

    Article  CAS  PubMed  Google Scholar 

  5. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  PubMed  Google Scholar 

  6. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50(6):823–839. doi:10.1016/j.neuron.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  7. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51

    Article  CAS  PubMed  Google Scholar 

  8. Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hubener M, Keck T, Knott G, Lee WC, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4(8):1128–1144. doi:10.1038/nprot.2009.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158. doi:10.1126/science.1137395

    Article  CAS  PubMed  Google Scholar 

  10. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  PubMed  Google Scholar 

  11. Nägerl UV, Bonhoeffer T (2010) Imaging living synapses at the nanoscale by STED microscopy. J Neurosci 30(28):9341–9346. 30/28/9341 [pii]. doi:10.1523/JNEUROSCI.0990-10.2010

    Article  PubMed  Google Scholar 

  12. Nägerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S a 105(48):18982–18987. 0810028105 [pii]. doi:10.1073/pnas.0810028105

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berning S, Willig KI, Steffens H, Dibaj P, Hell SW (2012) Nanoscopy in a living mouse brain. Science 335(6068):551. doi:10.1126/science.1215369

    Article  CAS  PubMed  Google Scholar 

  14. Willig KI, Steffens H, Gregor C, Herholt A, Rossner MJ, Hell SW (2014) Nanoscopy of filamentous actin in cortical dendrites of a living mouse. Biophys J 106(1):L01–L03. doi:10.1016/j.bpj.2013.11.1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bethge P, Chereau R, Avignone E, Marsicano G, Nägerl UV (2013) Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys J 104(4):778–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63(4):429–437. doi:10.1016/j.neuron.2009.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104(4):770–777. doi:10.1016/j.bpj.2012.12.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Q, SS W, Chou KC (2009) Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging. Biophys J 97(12):3224–3228. doi:10.1016/j.bpj.2009.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moneron G, Hell SW (2009) Two-photon excitation STED microscopy. Opt Express 17(17):14567–14573

    Article  CAS  PubMed  Google Scholar 

  20. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. doi:10.1038/nmeth818

    Article  CAS  PubMed  Google Scholar 

  21. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1369–1377. doi:10.1038/nbt899

    Article  CAS  PubMed  Google Scholar 

  22. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9(1):413–418

    Article  Google Scholar 

  23. Harke B, Keller J, Ullal CK, Westphal V, Schonle A, Hell SW (2008) Resolution scaling in STED microscopy. Opt Express 16(6):4154–4162

    Article  PubMed  Google Scholar 

  24. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210. doi:97/15/8206 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hell SW (2015) Nanoscopy with focused light (Nobel lecture). Angew Chem 54(28):8054–8066. doi:10.1002/anie.201504181

    Article  CAS  Google Scholar 

  26. Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312(5776):1051–1054. 1126308 [pii]. doi:10.1126/science.1126308

    Article  CAS  PubMed  Google Scholar 

  27. Sieber JJ, Willig KI, Kutzner C, Gerding-Reimers C, Harke B, Donnert G, Rammner B, Eggeling C, Hell SW, Grubmuller H, Lang T (2007) Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317(5841):1072–1076. doi:10.1126/science.1141727. 317/5841/1072 [pii]

    Article  CAS  PubMed  Google Scholar 

  28. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939. nature04592 [pii]. doi:10.1038/nature04592

    Article  CAS  PubMed  Google Scholar 

  29. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873):246–249. doi:10.1126/science.1154228. 1154228 [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Urban NT, Willig KI, Hell SW, Nägerl UV (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101(5):1277–1284. doi:10.1016/j.bpj.2011.07.027. S0006-3495(11)00885-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tonnesen J, Katona G, Rozsa B, Nägerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17(5):678–685. doi:10.1038/nn.3682. nn.3682 [pii]

    Article  CAS  PubMed  Google Scholar 

  32. Pfeiffer T, Avignone E, Nägerl UV (2016) Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines. Sci Rep 6:32422. doi:10.1038/srep32422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a PhD fellowship from the “European Neuroscience Campus” network (ENC) to MJTTV, a Boehringer Ingelheim PhD fellowship and a 4th-year extension grant from the “Fondation pour la Recherche Médicale” (FRM, FDT20160435677) to TP, and grants from the “Agence Nationale de la Recherche” (ANR) (ANR-13-BSV4-0007-01), France-BioImaging (ANR-10-INSB-04), and European Research Area Network NEURON II (ANR-12-NEUR-0007-03) to UVN. We thank Florian Levet (CNRS, University of Bordeaux) for the custom-made image analysis program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Valentin Nägerl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

ter Veer, M.J.T., Pfeiffer, T., Nägerl, U.V. (2017). Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo. In: Erfle, H. (eds) Super-Resolution Microscopy. Methods in Molecular Biology, vol 1663. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7265-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7265-4_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7264-7

  • Online ISBN: 978-1-4939-7265-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics