Skip to main content

Using Single-Protein Tracking to Study Cell Migration

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1749))

Abstract

To get a complete understanding of cell migration, it is critical to study its orchestration at the molecular level. Since the recent developments in single-molecule imaging, it is now possible to study molecular phenomena at the single-molecule level inside living cells. In this chapter, we describe how such approaches have been and can be used to decipher molecular mechanisms involved in cell migration.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

AOTF:

Acousto-optic tunable filter

Cas9:

CRISPR associated protein 9

CRISPR:

Clustered regularly interspaced short palindromic repeats

D :

Diffusion coefficient

DMEM:

Dulbecco’s modified Eagle medium, high glucose

EDTA:

Ethylenediaminetetraacetic acid

EMCCD:

Electron-multiplying charge-coupled device

FBS:

Fetal bovine serum

FWHM :

Full width at half maximum

GFP:

Green fluorescent protein

MEF:

Mouse embryonic fibroblast

mEos2:

Monomeric Eos2

MSD:

Mean square displacement

NA:

Numerical aperture

PALM:

Photoactivation localization microscopy

PBS:

Phosphate buffered saline

sCMOS:

Scientific complementary metal-oxide semiconductor

SRR:

Superresolved reconstruction image

STL:

Superresolution time-lapse movie

TIRF:

Total internal reflection fluorescence

uPAINT:

Universal point accumulation imaging in nanoscale topography

References

  1. Hu K, Ji L, Applegate KT et al (2007) Differential transmission of actin motion within focal adhesions. Science 315:111–115. https://doi.org/10.1126/science.1135085

    Article  CAS  PubMed  Google Scholar 

  2. Rossier O, Octeau V, Sibarita J-BB et al (2012) Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat Cell Biol 14:1057–1067. https://doi.org/10.1038/ncb2588

    Article  CAS  PubMed  Google Scholar 

  3. Paszek MJ, DuFort CC, Rossier O et al (2014) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511:319–325. https://doi.org/10.1038/nature13535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Constals A, Penn AC, Compans B et al (2015) Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from stargazin. Neuron 85:787–803. https://doi.org/10.1016/j.neuron.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  5. Murakoshi H, Iino R, Kobayashi T et al (2004) Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci 101:7317–7322. https://doi.org/10.1073/pnas.0401354101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chazeau A, Mehidi A, Nair D et al (2014) Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion. EMBO J 33:2745–2764. https://doi.org/10.15252/embj.201488837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shibata ACE, Chen LH, Nagai R et al (2013) Rac1 recruitment to the archipelago structure of the focal adhesion through the fluid membrane as revealed by single-molecule analysis. Cytoskeleton 70:161–177. https://doi.org/10.1002/cm.21097

    Article  CAS  PubMed  Google Scholar 

  8. Charest PG, Firtel RA (2007) Big roles for small GTPases in the control of directed cell movement. Biochem J 401:377–390. https://doi.org/10.1042/BJ20061432

    Article  CAS  PubMed  Google Scholar 

  9. Felsenfeld DP, Choquet D, Sheetz MP (1996) Ligand binding regulates the directed movement of β1 integrins on fibroblasts. Nature 383:438–440. https://doi.org/10.1038/383438a0

    Article  CAS  PubMed  Google Scholar 

  10. De Brabander M, Geuens G, Nuydens R et al (1985) Probing microtubule-dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios 43:273–283

    PubMed  Google Scholar 

  11. Suter DM, Forscher P (2001) Transmission of growth cone traction force through apCAM–cytoskeletal linkages is regulated by Src family tyrosine kinase activity. J Cell Biol 155:427–438. https://doi.org/10.1083/jcb.200107063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dahan M (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking445. Science 302:442. https://doi.org/10.1126/science.1088525

    Article  CAS  PubMed  Google Scholar 

  13. Groc L, Heine M, Cognet L et al (2004) Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 7:695–696. https://doi.org/10.1038/nn1270

    Article  CAS  PubMed  Google Scholar 

  14. Tardin C, Cognet L, Bats C et al (2003) Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J 22:4656–4665. https://doi.org/10.1093/emboj/cdg463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88:39–48. https://doi.org/10.1016/S0092-8674(00)81856-5

    Article  CAS  PubMed  Google Scholar 

  16. Giannone G, Jiang G, Sutton DH et al (2003) Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J Cell Biol 163:409–419. https://doi.org/10.1083/jcb.200302001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang G, Giannone G, Critchley DR et al (2003) Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:334–337. https://doi.org/10.1038/nature01805

    Article  CAS  PubMed  Google Scholar 

  18. Leduc C, Si S, Gautier J et al (2013) A highly specific gold nanoprobe for live-cell single-molecule imaging. Nano Lett 13:1489–1494. https://doi.org/10.1021/nl304561g

    Article  CAS  PubMed  Google Scholar 

  19. Chamma I, Rossier O, Giannone G et al (2017) Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin. Nat Protoc 12:748–763. https://doi.org/10.1038/nprot.2017.010

    Article  CAS  PubMed  Google Scholar 

  20. Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19:555–565. https://doi.org/10.1016/j.tcb.2009.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157. https://doi.org/10.1038/nmeth.1176

    Article  CAS  PubMed  Google Scholar 

  22. Cognet L, Leduc CC, Lounis B (2014) Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Curr Opin Chem Biol 20:78–85. https://doi.org/10.1016/j.cbpa.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  23. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016. https://doi.org/10.1146/annurev.biochem.77.061906.092014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Izeddin I, Boulanger J, Racine V et al (2012) Wavelet analysis for single molecule localization microscopy. Opt Express 20:2081–2095. https://doi.org/10.1364/OE.20.002081

    Article  CAS  PubMed  Google Scholar 

  25. Shcherbakova DM, Sengupta P, Lippincott-Schwartz J, Verkhusha VV (2014) Photocontrollable fluorescent proteins for superresolution imaging. Annu Rev Biophys 43:303–329. https://doi.org/10.1146/annurev-biophys-051013-022836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giannone G, Hosy E, Levet F et al (2010) Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys J 99:1303–1310. https://doi.org/10.1016/j.bpj.2010.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nair D, Hosy E, Petersen JD et al (2013) Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 33:13204–13224. https://doi.org/10.1523/JNEUROSCI.2381-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Courty S, Luccardini C, Bellaiche Y et al (2006) Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett 6:1491–1495. https://doi.org/10.1021/nl060921t

    Article  CAS  PubMed  Google Scholar 

  29. Keppler A, Kindermann M, Gendreizig S et al (2004) Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 32:437–444. https://doi.org/10.1016/j.ymeth.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  30. Keppler A, Pick H, Arrivoli C et al (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci 101:9955–9959. https://doi.org/10.1073/pnas.0401923101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grimm JB, English BP, Chen J et al (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12:244–250. https://doi.org/10.1038/nmeth.3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ries J, Kaplan C, Platonova E et al (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9:582–584. https://doi.org/10.1038/nmeth.1991

    Article  CAS  PubMed  Google Scholar 

  33. Chamma I, Letellier M, Butler C et al (2016) Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat Commun 7:10773. https://doi.org/10.1038/ncomms10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kechkar A, Nair D, Heilemann M et al (2013) Real-time analysis and visualization for single-molecule based super-resolution microscopy. PLoS One. https://doi.org/10.1371/journal.pone.0062918

  35. Ovesný M, Křížek P, Borkovec J et al (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390. https://doi.org/10.1093/bioinformatics/btu202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Chaumont F, Dallongeville S, Chenouard N et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696. https://doi.org/10.1038/nmeth.2075

    Article  CAS  PubMed  Google Scholar 

  37. Chenouard N, Bloch I, Olivo-Marin J-C (2013) Multiple hypothesis tracking for cluttered biological image sequences. IEEE Trans Pattern Anal Mach Intell 35:2736–3750. https://doi.org/10.1109/TPAMI.2013.97

    Article  PubMed  Google Scholar 

  38. Zala D, Hinckelmann MV, Yu H et al (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–491. https://doi.org/10.1016/j.cell.2012.12.029

    Article  CAS  PubMed  Google Scholar 

  39. Racine V, Hertzog A, Jouanneau J, et al (2006) Multiple-target tracking of 3D fluorescent objects based on simulated annealing. In: Third IEEE international symposium on biomediocal imaging: macro to nano, 2006. IEEE, pp 1020–1023

    Google Scholar 

  40. Racine V, Sachse M, Salamero J et al (2007) Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells. J Microsc 225:214–228. https://doi.org/10.1111/j.1365-2818.2007.01723.x. JMI1723 [pii]

    Article  PubMed  Google Scholar 

  41. Das S, Yin T, Yang Q et al (2015) Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling. Proc Natl Acad Sci U S A 112:E267–E276. https://doi.org/10.1073/pnas.1409667112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. El BM, Dahan M, Masson J-B (2015) InferenceMAP: mapping of single-molecule dynamics with Bayesian inference. Nat Methods 12:594–595. https://doi.org/10.1038/nmeth.3441

    Article  CAS  Google Scholar 

  43. Cluzel C, Saltel F, Lussi J et al (2005) The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J Cell Biol 171:383–392. https://doi.org/10.1083/jcb.200503017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown CM, Hebert B, Kolin DL et al (2006) Probing the integrin-actin linkage using high-resolution protein velocity mapping. J Cell Sci 119:5204–5214. https://doi.org/10.1242/jcs.03321

    Article  CAS  PubMed  Google Scholar 

  45. Frost NA, Shroff H, Kong H et al (2010) Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67:86–99. https://doi.org/10.1016/j.neuron.2010.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Honkura N, Matsuzaki M, Noguchi J et al (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57:719–729. https://doi.org/10.1016/j.neuron.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  47. Lai FPL, Szczodrak M, Block J et al (2008) Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J 27:982–992. https://doi.org/10.1038/emboj.2008.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Watanabe N, Mitchison TJ (2002) Single-molecule speckle analysis of actin filament turnover in Lamellipodia. Science 295:1083–1086. https://doi.org/10.1126/science.1067470

    Article  CAS  PubMed  Google Scholar 

  49. Giannone G, Mège RM, Thoumine O et al (2009) Multi-level molecular clutches in motile cell processes. Trends Cell Biol 19:475–486. https://doi.org/10.1016/j.tcb.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  50. Ponti A, Machacek M, Gupton SL et al (2004) Two distinct actin networks drive the protrusion of migrating cells. Science 305:1782–1786. https://doi.org/10.1126/science.1100533

    Article  CAS  PubMed  Google Scholar 

  51. Garcia M, Leduc C, Lagardère M et al (2015) Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones. Proc Natl Acad Sci 112:6997–7002. https://doi.org/10.1073/pnas.1423455112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tatavarty V, Kim EJ, Rodionov V, Yu J (2009) Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS One. https://doi.org/10.1371/journal.pone.0007724

  53. Tatavarty V, Das S, Yu J (2012) Polarization of actin cytoskeleton is reduced in dendritic protrusions during early spine development in hippocampal neuron. Mol Biol Cell 23:3167–3177. https://doi.org/10.1091/mbc.E12-02-0165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kanchanawong P, Shtengel G, Pasapera AM et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–584. https://doi.org/10.1038/nature09621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Case LB, Baird M, Shtengel G et al (2015) Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat Cell Biol 17:880–892. https://doi.org/10.1038/ncb3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456. https://doi.org/10.1126/science.1232251

    Article  CAS  PubMed  Google Scholar 

  57. Jungmann R, Avendaño MS, Woehrstein JB et al (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods 11:313–318. https://doi.org/10.1038/nmeth.2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jungmann R, Steinhauer C, Scheible M et al (2010) Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10:4756–4761. https://doi.org/10.1021/nl103427w

    Article  CAS  PubMed  Google Scholar 

  59. Schnitzbauer J, Strauss MT, Schlichthaerle T et al (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12:1198–1228. https://doi.org/10.1038/nprot.2017.024

    Article  CAS  PubMed  Google Scholar 

  60. Gurskaya NG, Verkhusha VV, Shcheglov AS et al (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465. https://doi.org/10.1038/nbt1191

    Article  CAS  PubMed  Google Scholar 

  61. Zhang M, Chang H, Zhang Y et al (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729. https://doi.org/10.1038/nmeth.2021

    Article  CAS  PubMed  Google Scholar 

  62. Cranfill PJ, Sell BR, Baird MA et al (2016) Quantitative assessment of fluorescent proteins. Nat Methods 13:557–562. https://doi.org/10.1038/nmeth.3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guan J, Liu H, Shi X et al (2017) Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH. Biophys J 112:1077–1084. https://doi.org/10.1016/j.bpj.2017.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ratz M, Testa I, Hell SW, Jakobs S (2015) CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci Rep 5:9592. https://doi.org/10.1038/srep09592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Truong Quang BA, Mani M, Markova O et al (2013) Principles of E-cadherin supramolecular organization in vivo. Curr Biol 23:2197–2207. https://doi.org/10.1016/j.cub.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  66. Karathanasis C, Fricke F, Hummer G, Heilemann M (2017) Molecule counts in localization microscopy with organic fluorophores. ChemPhysChem 18:942–948. https://doi.org/10.1002/cphc.201601425

    Article  CAS  PubMed  Google Scholar 

  67. Levet F, Hosy E, Kechkar A et al (2015) SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods 12:1065–1071. https://doi.org/10.1038/nmeth.3579

    Article  CAS  PubMed  Google Scholar 

  68. Giannone G, Mondin M, Grillo-Bosch D et al (2013) Neurexin-1β binding to neuroligin-1 triggers the preferential recruitment of PSD-95 versus gephyrin through tyrosine phosphorylation of neuroligin-1. Cell Rep 3:1996–2007. https://doi.org/10.1016/j.celrep.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  69. Simson R, Sheets ED, Jacobson K (1995) Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J 69:989–993. https://doi.org/10.1016/S0006-3495(95)79972-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Giannone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Orré, T., Mehidi, A., Massou, S., Rossier, O., Giannone, G. (2018). Using Single-Protein Tracking to Study Cell Migration. In: Gautreau, A. (eds) Cell Migration. Methods in Molecular Biology, vol 1749. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7701-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7701-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7700-0

  • Online ISBN: 978-1-4939-7701-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics