Skip to main content

Epithelial Function in the Drosophila Malpighian Tubule: An In Vivo Renal Model

  • Protocol
  • First Online:
Kidney Organogenesis

Abstract

The insect renal (Malpighian) tubule has long been a model system for the study of fluid secretion and its neurohormonal control, as well as studies on ion transport mechanisms. To extend these studies beyond the boundaries of classical physiology, a molecular genetic approach together with the ‘omics technologies is required. To achieve this in any vertebrate transporting epithelium remains a daunting task, as the genetic tools available are still relatively unsophisticated. Drosophila melanogaster, however, is an outstanding model organism for molecular genetics. Here we describe a technique for fluid secretion assays in the D. melanogaster equivalent of the kidney nephron. The development of this first physiological assay for a Drosophila epithelium, allowing combined approaches of integrative physiology and functional genomics, has now provided biologists with an entirely new model system, the Drosophila Malpighian tubule, which is utilized in multiple fields as diverse as kidney disease research and development of new modes of pest insect control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan TH (1910) Sex limited inheritance in Drosophila. Science 32:120–122

    Article  CAS  PubMed  Google Scholar 

  2. Rubin GM, Lewis EB (2000) A brief history of Drosophila’s contributions to genome research. Science 287:2216–2218

    Article  CAS  PubMed  Google Scholar 

  3. Rubin GM, Spradling AC (1983) Vectors for P element-mediated gene transfer in Drosophila. Nucleic Acids Res 11:6341–6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  5. Rosay P et al (1997) Cell-type specific calcium signalling in a Drosophila epithelium. J Cell Sci 110(Pt 15):1683–1692

    CAS  PubMed  Google Scholar 

  6. Davies SA, Terhzaz S (2009) Organellar calcium signalling mechanisms in Drosophila epithelial function. J Exp Biol 212:387–400

    Article  CAS  PubMed  Google Scholar 

  7. Tian L et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shafer OT et al (2008) Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58:223–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cabrero P et al (2014) Chloride channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-stimulated Drosophila diuresis. Proc Natl Acad Sci U S A 111:14301–14306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akerboom J et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Efetova M et al (2013) Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo. J Cell Sci 126:778–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dietzl G et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  CAS  PubMed  Google Scholar 

  13. Gramates L et al (2017) FlyBase at 25: looking to the future. Nucleic Acids Res 45:D663–D671

    Article  CAS  PubMed  Google Scholar 

  14. Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720

    Article  CAS  PubMed  Google Scholar 

  15. Leader DP, Krause SA, Pandit A, Davies SA, Dow JAT (2018) FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic Acids Res 46:D809–D815

    Article  CAS  PubMed  Google Scholar 

  16. Dow JT, Davies SA (2003) Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev 83:687–729

    Article  CAS  PubMed  Google Scholar 

  17. Dow JAT (2012) Drosophila as an experimental organism for functional genomics. In: eLS. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  18. Ugur B, Chen K, Bellen HJ (2016) Drosophila tools and assays for the study of human diseases. Dis Model Mech 9:235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dow JA, Romero MF (2010) Drosophila provides rapid modeling of renal development, function, and disease. Am J Physiol Renal Physiol 299:F1237–F1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Strange K (2016) Drug discovery in fish, flies, and worms. ILAR J 57:133–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sonoshita M, Cagan RL (2017) Modeling human cancers in Drosophila. Curr Top Dev Biol 121:287–309

    Article  CAS  PubMed  Google Scholar 

  22. Krench M, Littleton JT (2017) Neurotoxicity pathways in Drosophila models of the polyglutamine disorders. Curr Top Dev Biol 121:201–223

    Article  CAS  PubMed  Google Scholar 

  23. Berridge MJ, Oschman JL (1969) A structural basis for fluid secretion by malpighian tubules. Tissue Cell 1:247–272

    Article  CAS  PubMed  Google Scholar 

  24. Maddrell SHP (1971) The mechanisms of insect excretory systems. Adv Insect Physiol 8:199–331

    Article  CAS  Google Scholar 

  25. Dow JAT (2013) In: Chapman RF, Simpson SJ, Douglas AE (eds) The insects, structure and function. Cambridge University Press, Cambridge

    Google Scholar 

  26. Marcelli Malpighii Philosophii & Medici Bononiensis Dissertatio epistolica De Bombyce: Societati Regiae, Londini ad Scientiam Naturalem promovendam institutae, dicata Malpighi, Marcello, 1628–1694. https://encore.lib.gla.ac.uk/iii/encore/record/C_Rb2671014;jsessionid=DD1890B70359EE4BC74ADB74D5041C5B?lang=eng

  27. Maddrell S (2009) Insect homeostasis: past and future. J Exp Biol 212:446–451

    Article  PubMed  Google Scholar 

  28. Wessing A, Eichelberg D (1978) The genetics and biology of Drosophila, vol 2c. Academic Press, London

    Google Scholar 

  29. Denholm B (2013) Shaping up for action: the path to physiological maturation in the renal tubules of Drosophila. Organogenesis 9:40–54

    Article  PubMed  PubMed Central  Google Scholar 

  30. Beyenbach KW, Skaer H, Dow JA (2010) The developmental, molecular, and transport biology of Malpighian tubules. Annu Rev Entomol 55:351–374

    Article  CAS  PubMed  Google Scholar 

  31. Sozen MA, Armstrong JD, Yang M, Kaiser K, Dow JA (1997) Functional domains are specified to single-cell resolution in a Drosophila epithelium. Proc Natl Acad Sci U S A 94:5207–5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dow JA et al (1994) The Malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of fluid secretion and its control. J Exp Biol 197:421–428

    CAS  PubMed  Google Scholar 

  33. Dube K, McDonald DG, O'Donnell MJ (2000) Calcium transport by isolated anterior and posterior Malpighian tubules of Drosophila melanogaster: roles of sequestration and secretion. J Insect Physiol 46:1449–1460

    Article  CAS  PubMed  Google Scholar 

  34. Dube KA, McDonald DG, O'Donnell MJ (2000) Calcium homeostasis in larval and adult Drosophila melanogaster. Arch Insect Biochem Physiol 44:27–39

    Article  CAS  PubMed  Google Scholar 

  35. O’Donnell MJ, Maddrell SH (1995) Fluid reabsorption and ion transport by the lower Malpighian tubules of adult female Drosophila. J Exp Biol 198:1647–1653

    PubMed  Google Scholar 

  36. Dow JA (2009) Insights into the Malpighian tubule from functional genomics. J Exp Biol 212:435–445

    Article  CAS  PubMed  Google Scholar 

  37. Dow JA (1999) The multifunctional Drosophila melanogaster V-ATPase is encoded by a multigene family. J Bioenerg Biomembr 31:75–83

    Article  CAS  PubMed  Google Scholar 

  38. Allan AK, Du J, Davies SA, Dow JAT (2005) Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol Genomics 22:128–138

    Article  CAS  PubMed  Google Scholar 

  39. Torrie LS et al (2004) Resolution of the insect ouabain paradox. Proc Natl Acad Sci U S A 101:13689–13693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaufmann N et al (2005) Developmental expression and biophysical characterization of a Drosophila melanogaster aquaporin. Am J Physiol Cell Physiol 289:C397–C407

    Article  CAS  PubMed  Google Scholar 

  41. Kerr M, Davies SA, Dow JA (2004) Cell-specific manipulation of second messengers; a toolbox for integrative physiology in Drosophila. Curr Biol 14:1468–1474

    Article  CAS  PubMed  Google Scholar 

  42. Wang J et al (2004) Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol 5:R69

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chintapalli VR et al (2012) Functional correlates of positional and gender-specific renal asymmetry in Drosophila. PLoS One 7:e32577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davies SA et al (2012) Immune and stress response ‘cross-talk’ in the Drosophila Malpighian tubule. J Insect Physiol 58:488–497

    Article  CAS  PubMed  Google Scholar 

  45. Davies SA et al (2014) Cell signalling mechanisms in stress tolerance. J Exp Biol 217:119–128

    Article  CAS  PubMed  Google Scholar 

  46. Terhzaz S et al (2010) Cell-specific inositol 1,4,5 trisphosphate 3-kinase mediates epithelial cell apoptosis in response to oxidative stress in Drosophila. Cell Signal 22:737–748

    Article  CAS  PubMed  Google Scholar 

  47. Piermarini PM, Esquivel CJ, Denton S (2017) Malpighian tubules as novel targets for mosquito control. Int J Environ Res Public Health 14. https://doi.org/10.3390/ijerph14020111

    Article  PubMed Central  CAS  Google Scholar 

  48. Dow JA, Davies SA (2006) The Malpighian tubule: rapid insights from post-genomic biology. J Insect Physiol 52:365–378

    Article  CAS  PubMed  Google Scholar 

  49. Ianowski JP, O’Donnell MJ (2004) Basolateral ion transport mechanisms during fluid secretion by Drosophila Malpighian tubules: Na+ recycling, Na+:K+:2Cl− cotransport and Cl− conductance. J Exp Biol 207:2599–2609

    Article  CAS  PubMed  Google Scholar 

  50. Linton SM, O’Donnell MJ (1999) Contributions of K+:Cl− cotransport and Na+/K+-ATPase to basolateral ion transport in malpighian tubules of Drosophila melanogaster. J Exp Biol 202:1561–1570

    CAS  PubMed  Google Scholar 

  51. Maddrell SH, Overton JA (1988) Stimulation of sodium transport and fluid secretion by ouabain in an insect malpighian tubule. J Exp Biol 137:265–276

    CAS  PubMed  Google Scholar 

  52. Davies SA et al (1996) Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J Biol Chem 271:30677–30684

    Article  CAS  PubMed  Google Scholar 

  53. Karet FE et al (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90

    Article  CAS  PubMed  Google Scholar 

  54. Kamleh MA, Hobani Y, Dow JA, Zheng L, Watson DG (2009) Towards a platform for the metabonomic profiling of different strains of Drosophila melanogaster using liquid chromatography-Fourier transform mass spectrometry. FEBS J 276:6798–6809

    Article  CAS  PubMed  Google Scholar 

  55. O’Donnell MJ (2009) Too much of a good thing: how insects cope with excess ions or toxins in the diet. J Exp Biol 212:363–372

    Article  PubMed  CAS  Google Scholar 

  56. Dow JA (2007) Integrative physiology, functional genomics and the phenotype gap: a guide for comparative physiologists. J Exp Biol 210:1632–1640

    Article  PubMed  Google Scholar 

  57. Tardif G, Murnik M (1975) Frequency-dependent sexual selection among wild-type strains of Drosophila melanogaster. Behav Genet 5:373–379

    Article  CAS  PubMed  Google Scholar 

  58. Ramsay J (1954) Active transport of water by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera, Phasmidae). J Exp Biol 31:104–113

    CAS  Google Scholar 

  59. Chintapalli VR, Wang J, Herzyk P, Davies SA, Dow JA (2013) Data-mining the FlyAtlas online resource to identify core functional motifs across transporting epithelia. BMC Genomics 14:518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Du J et al (2006) The SzA mutations of the B subunit of the Drosophila vacuolar H+ ATPase identify conserved residues essential for function in fly and yeast. J Cell Sci 119:2542–2551

    Article  CAS  PubMed  Google Scholar 

  61. Maddrell SH, O’Donnell MJ (1992) Insect Malpighian tubules: v-ATPase action in ion and fluid transport. J Exp Biol 172:417–429

    CAS  PubMed  Google Scholar 

  62. Coast GM, Webster SG, Schegg KM, Tobe SS, Schooley DA (2001) The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 204:1795–1804

    CAS  PubMed  Google Scholar 

  63. Giannakou ME, Dow JA (2001) Characterization of the Drosophila melanogaster alkali-metal/proton exchanger (NHE) gene family. J Exp Biol 204:3703–3716

    CAS  PubMed  Google Scholar 

  64. Davies SA, Day JP (2006) cGMP signalling in a transporting epithelium. Biochem Soc Trans 34:512–514

    Article  CAS  PubMed  Google Scholar 

  65. Coast G (2007) The endocrine control of salt balance in insects. Gen Comp Endocrinol 152:332–338

    Article  CAS  PubMed  Google Scholar 

  66. Blumenthal EM (2003) Regulation of chloride permeability by endogenously produced tyramine in the Drosophila Malpighian tubule. Am J Physiol Cell Physiol 284:C718–C728

    Article  CAS  PubMed  Google Scholar 

  67. Wu Y, Schellinger JN, Huang CL, Rodan AR (2014) Hypotonicity stimulates potassium flux through the WNK-SPAK/OSR1 kinase cascade and the Ncc69 sodium-potassium-2-chloride cotransporter in the Drosophila renal tubule. J Biol Chem 289:26131–26142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O’Donnell MJ, Ianowski JP, Linton SM, Rheault MR (2003) Inorganic and organic anion transport by insect renal epithelia. Biochim Biophys Acta 1618:194–206

    Article  PubMed  CAS  Google Scholar 

  69. Halberg KA et al (2016) The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules. Nat Commun 7:11266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu Y, Baum M, Huang CL, Rodan AR (2015) Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function. Am J Physiol Regul Integr Comp Physiol 309:R747–R756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodan AR, Baum M, Huang CL (2012) The Drosophila NKCC Ncc69 is required for normal renal tubule function. Am J Physiol Cell Physiol 303:C883–C894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Day JP et al (2008) Identification of two partners from the bacterial kef exchanger family for the apical plasma membrane V-ATPase of Metazoa. J Cell Sci 121:2612–2619

    Article  CAS  PubMed  Google Scholar 

  73. Terhzaz S, Cabrero P, Chintapalli VR, Davies SA, Dow JAT (2010) Mislocalization of mitochondria and compromised renal function and oxidative stress resistance in Drosophila SesB mutants. Physiol Genomics 41:33–41

    Article  CAS  PubMed  Google Scholar 

  74. MacPherson MR, Lohmann SM, Davies SA (2004) Analysis of Drosophila cGMP-dependent protein kinases and assessment of their in vivo roles by targeted expression in a renal transporting epithelium. J Biol Chem 279:40026–40034

    Article  CAS  PubMed  Google Scholar 

  75. MacPherson MR et al (2004) The dg2 (for) gene confers a renal phenotype in Drosophila by modulation of cGMP-specific phosphodiesterase. J Exp Biol 207:2769–2776

    Article  CAS  PubMed  Google Scholar 

  76. Ruka KA, Miller AP, Blumenthal EM (2013) Inhibition of diuretic stimulation of an insect secretory epithelium by a cGMP-dependent protein kinase. Am J Physiol Renal Physiol 304:F1210–F1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Broderick KE et al (2003) Interactions between epithelial nitric oxide signaling and phosphodiesterase activity in Drosophila. Am J Physiol Cell Physiol 285:C1207–C1218

    Article  CAS  PubMed  Google Scholar 

  78. Pollock VP et al (2003) NorpA and itpr mutants reveal roles for phospholipase C and inositol (1,4,5)- trisphosphate receptor in Drosophila melanogaster renal function. J Exp Biol 206:901–911

    Article  CAS  PubMed  Google Scholar 

  79. MacPherson MR et al (2005) Transient receptor potential-like channels are essential for calcium signaling and fluid transport in a Drosophila epithelium. Genetics 169:1541–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Terhzaz S et al (2012) Mechanism and function of Drosophila capa GPCR: a desiccation stress-responsive receptor with functional homology to human neuromedinU receptor. PLoS One 7:e29897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cannell E et al (2016) The corticotropin-releasing factor-like diuretic hormone 44 (DH) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster. Peptides 80:96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zandawala M, Marley R, Davies SA, Nassel DR (2018) Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila. Cell Mol Life Sci 75:1099–1115

    Article  CAS  PubMed  Google Scholar 

  83. Blumenthal EM (2009) Isoform- and cell-specific function of tyrosine decarboxylase in the Drosophila Malpighian tubule. J Exp Biol 212:3802–3809

    Article  CAS  PubMed  Google Scholar 

  84. Ashburner M (1989) Drosophila: A laboratory handbook. Cold Spring Harbor Laboratory: 1331

    Google Scholar 

  85. Maddrell SHP (1991) BioEssays 13(7):357

    Article  Google Scholar 

Download references

Acknowledgments

Extensive support by the Biotechnology and Biological Sciences Research Council UK to the corresponding authors has been instrumental in developing the new fields of D. melanogaster integrative physiology and functional genomics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shireen-A. Davies or Julian A. T. Dow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Davies, SA. et al. (2019). Epithelial Function in the Drosophila Malpighian Tubule: An In Vivo Renal Model. In: Vainio, S. (eds) Kidney Organogenesis. Methods in Molecular Biology, vol 1926. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9021-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9021-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9020-7

  • Online ISBN: 978-1-4939-9021-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics