Skip to main content

Combination of Traction Assays and Multiphoton Imaging to Quantify Skin Biomechanics

  • Protocol
  • First Online:
Book cover Collagen

Abstract

An important issue in tissue biomechanics is to decipher the relationship between the mechanical behavior at macroscopic scale and the organization of the collagen fiber network at microscopic scale. Here, we present a protocol to combine traction assays with multiphoton microscopy in ex vivo murine skin. This multiscale approach provides simultaneously the stress/stretch response of a skin biopsy and the collagen reorganization in the dermis by use of second harmonic generation (SHG) signals and appropriate image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goulam Houssen Y, Gusachenko I, Schanne-Klein M-C, Allain J-M (2011) Monitoring micrometer-scale collagen organization in rat-tail tendon upon mechanical strain using second harmonic generation microscopy. J Biomech 44:2047–2052

    Article  CAS  Google Scholar 

  2. Bancelin S, Lynch B, Bonod-Bidaud C, Ducourthial G, Psilodimitrakopoulos S, Dokladal P, Allain J-M, Schanne-Klein M-C, Ruggiero F (2015) Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy. Sci Rep 5:17635

    Article  CAS  Google Scholar 

  3. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 100:7075–7080

    Article  CAS  Google Scholar 

  4. Strupler M, Pena A-M, Hernest M, Tharaux P-L, Martin J-L, Beaurepaire E, Schanne-Klein M-C (2007) Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express 15(7):4054–4065

    Article  CAS  Google Scholar 

  5. Chen XY, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7(4):654–669

    Article  CAS  Google Scholar 

  6. Lynch B, Bancelin S, Bonod-Bidaud C, Guesquin J-B, Ruggiero F, Schanne-Klein M-C, Allain J-M (2017) A novel microstructural interpretation for the biomechanics of mouse skin derived from multiscale characterization. Acta Biomater 50:302–311

    Article  CAS  Google Scholar 

  7. Jayyosi C, Affagard J-S, Ducourthial G, Bonod-Bidaud C, Lynch B, Bancelin S, Ruggiero F, Schanne-Klein M-C, Allain J-M, Bruyère-Garnier K, Coret M (2017) Affine kinematics in planar fibrous connective tissues: an experimental investigation. Biomech Model Mechanobiol 16(4):1459–1473

    Article  CAS  Google Scholar 

  8. Lynch B, Bonod-Bidaud C, Ducourthial G, Affagard J-S, Bancelin S, Psilodimitrakopoulos S, Ruggiero F, Allain J-M, Schanne-Klein M-C (2017) How aging impacts skin biomechanics: a multiscale study in mice. Sci Rep 7:13750

    Article  Google Scholar 

  9. Sinclair EB, Andarawis-Puri N, Ros SJ, Laudier DM, Jepsen KJ, Hausman MR (2012) Relating applied strain to the type and severity of structural damage in the rat median nerve using second harmonic generation microscopy. Muscle Nerve 46(6):899–907

    Article  Google Scholar 

  10. Wentzell S, Nesbitt RS, Macione J, Kotha S (2013) Measuring strain using digital image correlation of second harmonic generation images. J Biomech 46(12):2032–2038

    Article  Google Scholar 

  11. Chow MJ, Turcotte R, Lin CP, Zhang YH (2014) Arterial extracellular matrix: a Mechanobiological study of the contributions and interactions of elastin and collagen. Biophys J 106(12):2684–2692

    Article  CAS  Google Scholar 

  12. Sigal IA, Grimm JL, Jan NJ, Reid K, Minckler DS, Brown DJ (2014) Eye-specific IOP-induced displacements and deformations of human Lamina Cribrosa. Invest Ophth Vis Sci 55(1):1–15

    Article  Google Scholar 

  13. Mauri A, Ehret AE, Perrini M, Maake C, Ochsenbein-Kolble N, Ehrbar M, Oyen ML, Mazza E (2015) Deformation mechanisms of human amnion: quantitative studies based on second harmonic generation microscopy. J Biomech 48(9):1606–1613

    Article  Google Scholar 

  14. Alavi SH, Sinha A, Steward E, Milliken JC, Kheradvar A (2015) Load-dependent extracellular matrix organization in atrioventricular heart valves: differences and similarities. Am J Physiol Heart Circ Physiol 309(2):H276–H284

    Article  CAS  Google Scholar 

  15. Nesbitt S, Scott W, Macione J, Kotha S (2015) Collagen fibrils in skin orient in the direction of applied uniaxial load in proportion to stress while exhibiting differential strains around hair follicles. Materials 8(4):1841–1857

    Article  Google Scholar 

  16. Caulk AW, Nepiyushchikh ZV, Shaw R, Dixon JB, Gleason RL (2015) Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts. J R Soc Interface 12(108). ARTN 20150280

    Google Scholar 

  17. Benoit A, Latour G, Schanne-Klein M-C, Allain J-M (2016) Simultaneous microstructural and mechanical characterization of human corneas at increasing pressure. J Mech Behav Biomed Mater 60:93–105

    Article  Google Scholar 

  18. Krasny W, Morin C, Magoariec H, Avril S (2017) A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load. Acta Biomater 57:342–351

    Article  Google Scholar 

  19. Serra J (1982) Analysis and mathematical morphology. Academic Press

    Google Scholar 

  20. Bayan C, Levitt JM, Miller E, Kaplan D, Georgakoudi I (2009) Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels. J Appl Phys 105(10):102042

    Article  Google Scholar 

  21. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotech 21(11):1369–1377

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Ecole Polytechnique (interdisciplinary project) and from Agence Nationale de la Recherche (contracts ANR-10-INBS-04 France BioImaging, ANR-11-EQPX-0029 Morphoscope2, and ANR-13-BS09-0004-02 Metis). The authors thank Vincent de Greef for his help in the technical implantation of the mechanical setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claire Schanne-Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bancelin, S. et al. (2019). Combination of Traction Assays and Multiphoton Imaging to Quantify Skin Biomechanics. In: Sagi, I., Afratis, N. (eds) Collagen. Methods in Molecular Biology, vol 1944. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9095-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9095-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9094-8

  • Online ISBN: 978-1-4939-9095-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics