Skip to main content

Ligand Design for Modulation of RXR Functions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2019))

Abstract

Retinoid X receptors (RXRs) are promiscuous partners of heterodimeric associations with other members of the Nuclear Receptor (NR) superfamily. RXR ligands (“rexinoids”) either transcriptionally activate the “permissive” subclass of heterodimers or synergize with partner ligands in the “nonpermissive” subclass of heterodimers. The rationale for rexinoid design with a wide structural diversity going from the structures of existing complexes with RXR determined by X-Ray, to natural products and other ligands discovered by high-throughput screening (HTS), mere serendipity, and rationally designed based on Molecular Modeling, will be described. Included is the new generation of ligands that modulate the structure of specific receptor surfaces that serve to communicate with other regulators. The panel of the known RXR agonists, partial (ant)agonists, and/or heterodimer-selective rexinoids require the exploration of their therapeutic potential in order to overcome some of the current limitations of rexinoids in therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Laudet V, Gronemeyer H (2002) The nuclear receptor facts book. Academic Press, San Diego

    Google Scholar 

  2. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M et al (2006) The pharmacology and classification of the nuclear receptor superfamily. RETINOID X RECEPTORS (RXRs). Pharmacol Rev 58:760–772

    Article  Google Scholar 

  3. Mangelsdorf DA, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83:841–850

    Article  CAS  Google Scholar 

  4. Kojetin DJ, Matta-Camacho E, Hughes TS, Srinivasan S, Nwachukwu JC, Cavett V et al (2015) Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. Nat Commun 6:8013

    Article  CAS  Google Scholar 

  5. Evans RM, Mangelsdorf DJ (2014) Nuclear receptors, RXR, and the big bang. Cell 157:255–266

    Article  CAS  Google Scholar 

  6. Germain P, Iyer J, Zechel C, Gronemeyer H (2002) Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 415:187–192

    Article  CAS  Google Scholar 

  7. Gronemeyer H, Gustafsson J-A, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nature Rev Drug Disc 3:950–964

    Article  CAS  Google Scholar 

  8. Hermanson O, Glass CK, Rosenfeld MG (2002) Nuclear receptor coregulators: multiple modes of modifications. Trends Endocrinol Metab 13:55–60

    Article  CAS  Google Scholar 

  9. Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ et al (2000) Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102:753–763

    Article  CAS  Google Scholar 

  10. Smith CL, O'Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25:45–71

    Article  CAS  Google Scholar 

  11. Dollé P, Niederreither K (2015) The retinoids: biology, biochemistry and disease. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  12. Bourguet W, Moras D (2015) Retinoid receptors: protein structure, DNA recognition and structure-function relationships. In: Dollé P, Niederreither K (eds) The retinoids: biology, biochemistry, and disease. John Wiley & Sons, Hoboken, NJ, pp 131–149

    Chapter  Google Scholar 

  13. Mendoza-Parra MA, Bourguet W, de Lera AR, Gronemeyer H (2015) Retinoid receptor-selective modulators: chemistry, 3D structures and systems biology. In: Dollé P, Neiderreither K (eds) The retinoids: biology, biochemistry, and disease. Wiley-Blackwell, Hoboken, NJ, pp 165–192

    Chapter  Google Scholar 

  14. Dominguez M, Alvarez S, de Lera AR (2017) Natural and structure-based RXR ligand scaffolds and their functions. Curr Top Med Chem 17:631–662

    Article  CAS  Google Scholar 

  15. Huang P, Chandra V, Rastinejad F (2014) Retinoic acid actions through mammalian nuclear receptors. Chem Rev 114:233–254

    Article  CAS  Google Scholar 

  16. Zhang H, Chen L, Chen J, Jiang H, Shen X (2011) Structural basis for retinoic X receptor repression on the tetramer. J Biol Chem 286:24593–24598

    Article  CAS  Google Scholar 

  17. Sato Y, Ramalanjaona N, Huet T, Potier N, Osz J, Antony P et al (2010) The “Phantom Effect” of the rexinoid LG100754: structural and functional insights. PLoS One 5:e15119

    Article  CAS  Google Scholar 

  18. Germain P, Gaudon C, Pogenberg V, Sanglier S, Potier N, Van Dorsselaer A et al (2009) Differential action on coregulator interaction defines inverse retinoid agonists and neutral antagonists. Chem Biol 16:479–489

    Article  CAS  Google Scholar 

  19. le Maire A, Teyssier C, Erb C, Grimaldi M, Alvarez S, de Lera AR et al (2010) A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nat Struct Mol Biol 17:801–807

    Article  Google Scholar 

  20. Bourguet W, de Lera AR, Gronemeyer H (2010) Inverse agonists and antagonists of retinoid receptors. In: Conn PM (ed) Meth Enzymol. Academic Press, New York, pp 161–195

    Google Scholar 

  21. Pérez E, Bourguet W, Gronemeyer H, de Lera AR (2012) Modulation of RXR function through ligand design. Biochim Biophys Acta 1821:57–69

    Article  Google Scholar 

  22. le Maire A, Alvarez S, Shankaranarayanan P, de Lera AR, Bourguet W, Gronemeyer H (2012) Retinoid receptors and therapeutic applications of RAR/RXR modulators. Curr Top Med Chem 12:505–527

    Article  Google Scholar 

  23. Arnold SLM, Amory JK, Walsh TJ, Isoherranen N (2012) A sensitive and specific method for measurement of multiple retinoids in human serum with UHPLC-MS/MS. J Lipid Res 53:587–598

    Article  CAS  Google Scholar 

  24. Kane MA (2012) Analysis, occurrence, and function of 9-cis-retinoic acid. Biochim Biophys Acta 1821:10–20

    Article  CAS  Google Scholar 

  25. Rühl R, Krzyzosiak A, Niewiadomska-Cimicka A, Rochel N, Szeles L, Bn V et al (2015) 9-cis-13,14-Dihydroretinoic acid is an endogenous retinoid acting as RXR ligand in mice. PLoS Genet 11:e1005213

    Article  Google Scholar 

  26. Moise AR, Alvarez S, Domínguez M, Alvarez R, Golczak M, Lobo GP et al (2009) Activation of retinoic acid receptors by dihydroretinoids. Mol Pharmacol 76:1228–1237

    Article  CAS  Google Scholar 

  27. Egea PF, Mitschler A, Rochel N, Ruff M, Chambon P, Moras D (2000) Crystal structure of the human RXRα ligand-binding domain bound to its natural ligand: 9-cis-retinoic acid. EMBO J 19:2592–2601

    Article  CAS  Google Scholar 

  28. Egea PF, Mitschler A, Moras D (2002) Molecular recognition of agonist ligands by RXRs. Mol Endocrinol 16:987–997

    Article  CAS  Google Scholar 

  29. Bourguet W, Vivat V, Wurtz J-M, Chambon P, Gronemeyer H, Moras D (2000) Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol Cell 5:289–298

    Article  CAS  Google Scholar 

  30. Nahoum V, Pérez E, Germain P, Rodríguez-Barrios F, Manzo F, Kammerer S et al (2007) Modulators of the structural dynamics of RXR to reveal receptor function. Proc Natl Acad Sci U S A 104:17323–17328

    Article  CAS  Google Scholar 

  31. Pérez-Santín E, Germain P, Quillard F, Khanwalkar H, Rodríguez-Barrios F, Gronemeyer H et al (2009) Modulating retinoid X receptor with a series of (E)-3-[4-hydroxy-3-(3-alkoxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)phenyl]acrylic acids and their 4-alkoxy isomers. J Med Chem 52:3150–3158

    Article  Google Scholar 

  32. Zhang L, Nadzan AM, Heyman RA, Love DL, Mais DE, Croston G et al (1996) Discovery of novel retinoic acid receptor agonists having potent antiproliferative activity in cervical cancer cells. J Med Chem 39:2659–2663

    Article  CAS  Google Scholar 

  33. Bennani JL, Marron KS, Mais DE, Flatten K, Nadzan AM, Boehm MF (1998) Synthesis and characterization of a highly potent and selective isotopically labeled retinoic acid receptor ligand, ALRT1550. J Org Chem 63:543–550

    Article  CAS  Google Scholar 

  34. Canan-Koch SS, Dardashti LJ, Cesario RM, Croston GE, Boehm MF, Heyman RA et al (1999) Synthesis of retinoid X receptor-specific ligands that are potent inducers of adipogenesis in 3T3-L1 cells. J Med Chem 42:742–750

    Article  CAS  Google Scholar 

  35. Michellys PY, D’Arrigo J, Grese TA, Karanewsky DS, Leibowitz MD, Mais DA et al (2004) Design, synthesis and structure-activity relationship of novel RXR-selective modulators. Bioorg Med Chem Lett 14:1593–1598

    Article  CAS  Google Scholar 

  36. Canan Koch SS, Dardashti LJ, Hebert JJ, White SK, Croston GE, Flatten KS et al (1996) Identification of the first retinoid X receptor homodimer antagonist. J Med Chem 39:3229–3234

    Article  CAS  Google Scholar 

  37. Schulman IG, Li C, Schwabe JW, Evans RM (1997) The phantom ligand effect: allosteric control of transcription by the retinoid X receptor. Genes Dev 11:299–308

    Article  CAS  Google Scholar 

  38. Muccio DD, Brouillette WJ, Breitman TR, Taimi M, Emanuel PD, X-k Z et al (1998) Conformationally defined retinoid acid analogues. 4. Potential new agents for acute promielocytic and juvenile myelomonocytic leukemias. J Med Chem 41:1679–1687

    Article  CAS  Google Scholar 

  39. Atigadda VR, Vines KK, Grubbs CJ, Hill DL, Beenken SL, Bland KI et al (2003) Conformationally defined retinoic acid analogues. 5. Large-scale synthesis and mammary cancer chemopreventive activity for (2E,4E,6Z,8E)-8-(3′,4′-Dihydro-1′(2′H)-naphathalen-1′ylidene)-3,7-dimethyl-2,4,6-octatrienoic acid. J Med Chem 46:3766–3769

    Article  CAS  Google Scholar 

  40. Grubbs CJ, Lubet RA, Atigadda VR, Christov K, Deshpande AM, Tirmal V et al (2006) Efficacy of new retinoids in the prevention of mammary cancers and correlations with short-term biomarkers. Carcinogenesis 27:1232–1239

    Article  CAS  Google Scholar 

  41. Kolesar JM, Hoel R, Pomplun M, Havighurst T, Stublaski J, Wollmer B et al (2010) A pilot, first-in-human, pharmacokinetic study of 9cUAB30 in healthy volunteers. Cancer Prev Res 3:1565–1570

    Article  CAS  Google Scholar 

  42. Kapetanovic IM, Horn TL, Johnson WD, Cwik MJ, Detrisac CJ, McCormick DL (2010) Murine oncogenicity and pharmacokinetics studies of 9-cis-UAB30, an RXR agonist, for breast cancer chemoprevention. Int J Toxicol 29:157–164

    Article  CAS  Google Scholar 

  43. Desphande A, Xia G, Boerma LJ, Vines KK, Atigadda VR, Lobo-Ruppert S et al (2014) Methyl-substituted conformationally constrained rexinoid agonists for the retinoid X receptors demonstrate improved efficacy for cancer therapy and prevention. Bioorg Med Chem 22:178–185

    Article  CAS  Google Scholar 

  44. Atigadda VR, Xia G, Desphande A, Boerma LJ, Lobo-Ruppert S, Grubbs CJ et al (2014) Methyl substitution of a rexinoid agonist improves potency and reveals site of lipid toxicity. J Med Chem 57(12):5370–5380

    Article  CAS  Google Scholar 

  45. Atigadda VR, Xia G, Deshpande A, Wu L, Kedishvili N, Smith CD et al (2015) Conformationally defined rexinoids and their efficacy in the prevention of mammary cancers. J Med Chem 58:7763–7774

    Article  CAS  Google Scholar 

  46. Vuligonda V, Lin Y, Chandraratna RAS (1996) Synthesis of highly potent RXR-specific retinoids: The use of a cyclopropyl group as a double bond isostere. Bioorg Med Chem Lett 6:213–218

    Article  CAS  Google Scholar 

  47. Haffner CD, Lenhard JM, Miller AB, McDougald DL, Dwornik K, Ittoop OR et al (2004) Structure-based design of potent retinoid X receptor a agonists. J Med Chem 47:2010–2029

    Article  CAS  Google Scholar 

  48. Lehmann J, Jong L, Fanjul A, Cameron J, Lu X, Haefner P et al (1992) Retinoids selective for retinoid X receptor response pathways. Science 258:1944–1946

    Article  CAS  Google Scholar 

  49. Boehm MF, Zhang L, Badea BA, White SK, Mais DE, Berger E et al (1994) Synthesis and structure-activity relationships of novel retinoid X receptor-selective retinoids. J Med Chem 37:2930–2941

    Article  CAS  Google Scholar 

  50. Boehm MF, Zhang L, Zhi L, McClurg MR, Berger E, Wagoner M et al (1995) Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells. J Med Chem 38:3146–3155

    Article  CAS  Google Scholar 

  51. Tanaka T, De Luca LM (2009) Therapeutic potential of “rexinoids” in cancer prrevention and treatment. Cancer Res 69:4945–4947

    Article  CAS  Google Scholar 

  52. Sherman SI, Gopal J, Haugen BR, Chiu AC, Whaley K, Nowlakha P et al (1999) Central hypothyroidism associated with retinoid X receptor-selective ligands. New Engl J Med 340:1075–1079

    Article  CAS  Google Scholar 

  53. Shankaranarayanan P, Rossin A, Khanwalkar H, Alvarez S, Alvarez R, Jacobson A et al (2009) Growth factor-antagonized rexinoid apoptosis involves permissive PPARγ/RXR heterodimers to activate the intrinsic death pathway by NO. Cancer Cell 16:220–231

    Article  CAS  Google Scholar 

  54. Dawson MI, Jong L, Hobbs PD, Cameron JF, Chao W-R, Pfahl M et al (1995) Conformational effects on retinoid receptor selectivity. 2. Effects of retinoid bridging group on retinoid X receptor activity and selectivity. J Med Chem 38:3368–3383

    Article  CAS  Google Scholar 

  55. Ohta K, Kawachi E, Fukasawa H, Shudo K, Kagechika H (2011) Diphenylamine-based retinoid antagonists: Regulation of RAR and RXR function depending on the N-substituent. Bioorg Med Chem 19:2501–2507

    Article  CAS  Google Scholar 

  56. Ohta K, Tsuji M, Kawachi E, Fukasawa H, Hashimoto Y, Shudo K et al (1998) Potent retinoid synergists with a diphenylamine skeleton. Biol Pharm Bull 21:544–546

    Article  CAS  Google Scholar 

  57. Takahashi B, Ohta K, Kawachi E, Fukasawa H, Hashimoto Y, Kagechika H (2002) Novel retinoid X receptor antagonists: specific inhibition of retinoid synergism in RXR-RAR heterodimers. J Med Chem 45:3327–3329

    Article  CAS  Google Scholar 

  58. Kakuta H, Yakushiji N, Shinozaki R, Ohsawa F, Yamada S, Ohta Y et al (2012) RXR partial agonist CBt-PMN exerts therapeutic effects on type 2 diabetes without the side effects of RXR full agonists. ACS Med Chem Lett 3:427–432

    Article  CAS  Google Scholar 

  59. Ohsawa F, Yamada S, Yakushiji N, Shinozaki R, Nakayama M, Kawata K et al (2013) Mechanism of retinoid X receptor partial agonistic action of 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid and structural development to increase potency. J Med Chem 56:1865–1877

    Article  CAS  Google Scholar 

  60. Kawata K, Morishita K-i, Nakayama M, Yamada S, Kobayashi T, Furusawa Y et al (2015) RXR partial agonist produced by side chain repositioning of alkoxy RXR full agonist retains antitype 2 diabetes activity without the adverse effects. J Med Chem 58:912–926

    Article  CAS  Google Scholar 

  61. Wallén-Mackenzie Ö, Mata de Urquiza A, Petersson S, Rodriguez FJ, Friling S, Wagner J et al (2003) Nurr1-RXR heterodimers mediate RXR ligand-induced signaling in neuronal cells. Genes Dev 17:3036–3047

    Article  Google Scholar 

  62. Spathis AD, Asvos X, Ziavra D, Karampelas T, Topouzis S, Cournia Z et al (2017) Nurr1:RXRα heterodimer activation as monotherapy for Parkinson’s disease. Proc Natl Acad Sci U S A 114:3999–4004

    Article  CAS  Google Scholar 

  63. Lagu B, Pio B, Lebedev R, Yang M, Pelton PD (2007) RXR-LXR heterodimer modulators for the potential treatment of dyslipidemia. Bioorg Med Chem Lett 17:3497–3503

    Article  CAS  Google Scholar 

  64. Lagu B, Lebedev R, Pio B, Yang M, Pelton PD (2007) Dihydro-[1H]-quinolin-2-ones as retinoid X receptor (RXR) agonists for potential treatment of dyslipidemia. Bioorg Med Chem Lett 17:3491–3496

    Article  CAS  Google Scholar 

  65. Umemiya H, Fukasawa H, Ebisawa M, Eyrolles L, Kawachi E, Eisenmann G et al (1997) Regulation of retinoidal actions by diazepinylbenzoic acids. Retinoid synergists activate the RXR-RAR heterodimers. J Med Chem 40:4222–4234

    Article  CAS  Google Scholar 

  66. Morita K, Kawana K, Sodeyama M, Shimomura I, Kagechika H, Makishima M (2005) Selective allosteric ligand activation of the retinoid X receptor heterodimers of NGFI-B and Nurr1. Biochem Pharmacol 71:98–107

    Article  CAS  Google Scholar 

  67. Kagechika H, Shudo K (2005) Synthetic retinoids: recent developments concerning structure and clinical utility. J Med Chem 48:5875–5883

    Article  CAS  Google Scholar 

  68. Sakaki J, Kishida M, Konishi K, Gunji H, Toyao A, Matsumoto Y et al (2007) Synthesis and structure-activity relationship of novel RXR antagonists: orally active anti-diabetic and anti-obesity agents. Bioorg Med Chem Lett 17:4804–4807

    Article  CAS  Google Scholar 

  69. Sakaki J, Konishi K, Kishida M, Gunji H, Kanazawa T, Uchiyama H et al (2007) Synthesis and structure-activity relationship of RXR antagonists based on the diazepinylbenzoic acid structure. Bioorg Med Chem Lett 17:4808–4811

    Article  CAS  Google Scholar 

  70. Sundén H, Schäfer A, Scheepstra M, Leysen S, Malo M, Ma J-N et al (2016) Chiral dihydrobenzofuran acids show potent retinoid X receptor–nuclear receptor related 1 protein dimer activation. J Med Chem 59:1232–1238

    Article  Google Scholar 

  71. Katsila T, Spyroulias GA, Patrinos GP, Matsoukas M-T (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184

    Article  CAS  Google Scholar 

  72. Schneider G (2017) Automating drug discovery. Nature Rev Drug Disc 17:97–113

    Article  Google Scholar 

  73. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395

    Article  Google Scholar 

  74. Reker D, Rodrigues T, Schneider P, Schneider G (2014) Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci U S A 111:4067

    Article  CAS  Google Scholar 

  75. Reutlinger M, Koch Christian P, Reker D, Todoroff N, Schneider P, Rodrigues T et al (2013) Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for ‘orphan’ molecules. Mol Inf 32:133–138

    Article  CAS  Google Scholar 

  76. Xu D, Cai L, Guo S, Xie L, Yin M, Chen Z et al (2017) Virtual screening and experimental validation identify novel modulators of nuclear receptor RXRα from Drugbank database. Bioorg Med Chem Lett 27:1055–1061

    Article  CAS  Google Scholar 

  77. Chen L, Wang Z-G, Aleshin AE, Chen F, Chen J, Jiang F et al (2014) Sulindac-derived RXRα modulators inhibit cancer cell growth by binding to a novel site. Chem Biol 21:596–607

    Article  CAS  Google Scholar 

  78. Chen F, Liu J, Huang M, Hu M, Su Y, X-k Z (2014) Identification of a new RXRα antagonist targeting the coregulator-binding site. ACS Med Chem Lett 5:736–741

    Article  CAS  Google Scholar 

  79. Xu D, Guo S, Chen Z, Bao Y, Huang F, Xu D et al (2016) Binding characterization, synthesis and biological evaluation of RXRα antagonists targeting the coactivator binding site. Bioorg Med Chem Lett 26:3846–3849

    Article  CAS  Google Scholar 

  80. Scheepstra M, Nieto L, Hirsch AKH, Fuchs S, Leysen S, Lam CV et al (2014) A natural-product switch for a dynamic protein interface. Angew Chem Int Ed 53:6443–6448

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish MINECO (SAF2016-77620-R-FEDER), Xunta de Galicia (Consolidación GRC 2017/61 from DXPCTSUG; ED-431G/02-FEDER “Unha maneira de facer Europa” to CINBIO, a Galician research center 2016-2019); Juan de la Cierva Contract to J. A. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel R. de Lera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Martínez, C., Souto, J.A., de Lera, A.R. (2019). Ligand Design for Modulation of RXR Functions. In: Ray, S. (eds) Retinoid and Rexinoid Signaling . Methods in Molecular Biology, vol 2019. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9585-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9585-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9584-4

  • Online ISBN: 978-1-4939-9585-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics