Skip to main content

P2X Electrophysiology and Surface Trafficking in Xenopus Oocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2041))

Abstract

Xenopus oocytes serve as a standard heterologous expression system for the study of various ligand-gated ion channels including ATP P2X receptors. Here we describe the whole-cell two-electrode voltage clamp and biotinylation/Western blotting techniques to investigate the functional properties and surface trafficking from P2X-expressing oocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gurdon JB, Woodland HR, Lingrel JB (1974) The translation of mammalian globin mRNA injected into fertilized eggs of Xenopus laevis. I. Message stability in development. Dev Biol 39:125–133

    Article  CAS  PubMed  Google Scholar 

  2. Gundersen CB, Miledi R, Parker I (1983) Serotonin receptors induced by exogenous messenger RNA in Xenopus oocytes. Proc R Soc Lond B Biol Sci 219:103–109

    Article  CAS  PubMed  Google Scholar 

  3. Sakmann B, Methfessel C, Mishina M, Takahashi T, Takai T, Kurasaki M, Fukuda K, Numa S (1985) Role of acetylcholine receptor subunits in gating of the channel. Nature 318:538–543

    Article  CAS  PubMed  Google Scholar 

  4. Burnstock G (2012) Discovery of purinergic signalling, the initial resistance and current explosion of interest. Br J Pharmacol 167:238–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ (2006) Molecular properties of P2X receptors. Pflugers Arch 452:486–500

    Article  CAS  PubMed  Google Scholar 

  6. Sigel E (1990) Use of Xenopus oocytes for the functional expression of plasma membrane proteins. J Membr Biol 117:201–221

    Article  CAS  PubMed  Google Scholar 

  7. Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371:516–519

    Article  CAS  PubMed  Google Scholar 

  8. Le KT, Boue-Grabot E, Archambault V, Seguela P (1999) Functional and biochemical evidence for heteromeric ATP-gated channels composed of P2X1 and P2X5 subunits. J Biol Chem 274:15415–15419

    Article  CAS  PubMed  Google Scholar 

  9. Brown SG, Townsend-Nicholson A, Jacobson KA, Burnstock G, King BF (2002) Heteromultimeric P2X(1/2) receptors show a novel sensitivity to extracellular pH. J Pharmacol Exp Ther 300:673–680

    Article  CAS  PubMed  Google Scholar 

  10. Liu M, King BF, Dunn PM, Rong W, Townsend-Nicholson A, Burnstock G (2001) Coexpression of P2X(3) and P2X(2) receptor subunits in varying amounts generates heterogeneous populations of P2X receptors that evoke a spectrum of agonist responses comparable to that seen in sensory neurons. J Pharmacol Exp Ther 296:1043–1050

    CAS  PubMed  Google Scholar 

  11. Xiong K, Li C, Weight FF (2000) Inhibition by ethanol of rat P2X(4) receptors expressed in Xenopus oocytes. Br J Pharmacol 130:1394–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boue-Grabot E, Akimenko MA, Seguela P (2000) Unique functional properties of a sensory neuronal P2X ATP-gated channel from zebrafish. J Neurochem 75:1600–1607

    Article  CAS  PubMed  Google Scholar 

  13. Bo X, Schoepfer R, Burnstock G (2000) Molecular cloning and characterization of a novel ATP P2X receptor subtype from embryonic chick skeletal muscle. J Biol Chem 275:14401–14407

    Article  CAS  PubMed  Google Scholar 

  14. Wang CZ, Namba N, Gonoi T, Inagaki N, Seino S (1996) Cloning and pharmacological characterization of a fourth P2X receptor subtype widely expressed in brain and peripheral tissues including various endocrine tissues. Biochem Biophys Res Commun 220:196–202

    Article  CAS  PubMed  Google Scholar 

  15. Seguela P, Haghighi A, Soghomonian JJ, Cooper E (1996) A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J Neurosci 16:448–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Evans RJ, Lewis C, Buell G, Valera S, North RA, Surprenant A (1995) Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors). Mol Pharmacol 48:178–183

    CAS  PubMed  Google Scholar 

  17. Lynch KJ, Touma E, Niforatos W, Kage KL, Burgard EC, van Biesen T, Kowaluk EA, Jarvis MF (1999) Molecular and functional characterization of human P2X(2) receptors. Mol Pharmacol 56:1171–1181

    Article  CAS  PubMed  Google Scholar 

  18. Le KT, Paquet M, Nouel D, Babinski K, Seguela P (1997) Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system. FEBS Lett 418:195–199

    Article  CAS  PubMed  Google Scholar 

  19. Schneider M, Prudic K, Pippel A, Klapperstück M, Braam U, Müller CE, Schmalzing G, Markwardt F (2017) Interaction of purinergic P2X4 and P2X7 receptor subunits. Front Pharmacol 8:860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wen H, Evans RJ (2009) Regions of the amino terminus of the P2X receptor required for modification by phorbol ester and mGluR1alpha receptors. J Neurochem 108:331–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Codocedo JF, Rodriguez FE, Huidobro-Toro JP (2009) Neurosteroids differentially modulate P2X ATP-gated channels through non-genomic interactions. J Neurochem 110:734–744

    Article  CAS  PubMed  Google Scholar 

  22. Low SE, Kuwada JY, Hume RI (2008) Amino acid variations resulting in functional and nonfunctional zebrafish P2X(1) and P2X (5.1) receptors. Purinergic Signal 4:383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett 581:483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roberts JA, Evans RJ (2005) Mutagenesis studies of conserved proline residues of human P2X receptors for ATP indicate that proline 272 contributes to channel function. J Neurochem 92:1256–1264

    Article  CAS  PubMed  Google Scholar 

  25. Davies DL, Kochegarov AA, Kuo ST, Kulkarni AA, Woodward JJ, King BF, Alkana RL (2005) Ethanol differentially affects ATP-gated P2X(3) and P2X(4) receptor subtypes expressed in Xenopus oocytes. Neuropharmacology 49:243–253

    Article  CAS  PubMed  Google Scholar 

  26. Kanjhan R, Raybould NP, Jagger DJ, Greenwood D, Housley GD (2003) Allosteric modulation of native cochlear P2X receptors: insights from comparison with recombinant P2X2 receptors. Audiol Neurootol 8:115–128

    Article  CAS  PubMed  Google Scholar 

  27. Paukert M, Hidayat S, Grunder S (2002) The P2X(7) receptor from Xenopus laevis: formation of a large pore in Xenopus oocytes. FEBS Lett 513:253–258

    Article  CAS  PubMed  Google Scholar 

  28. Nakazawa K, Ojima H, Ohno Y (2002) A highly conserved tryptophane residue indispensable for cloned rat neuronal P2X receptor activation. Neurosci Lett 324:141–144

    Article  CAS  PubMed  Google Scholar 

  29. Ennion SJ, Evans RJ (2002) Conserved cysteine residues in the extracellular loop of the human P2X(1) receptor form disulfide bonds and are involved in receptor trafficking to the cell surface. Mol Pharmacol 61:303–311

    Article  CAS  PubMed  Google Scholar 

  30. Ennion SJ, Evans RJ (2002) P2X(1) receptor subunit contribution to gating revealed by a dominant negative PKC mutant. Biochem Biophys Res Commun 291:611–616

    Article  CAS  PubMed  Google Scholar 

  31. Eickhorst AN, Berson A, Cockayne D, Lester HA, Khakh BS (2002) Control of P2X(2) channel permeability by the cytosolic domain. J Gen Physiol 120:119–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clyne JD, LaPointe LD, Hume RI (2002) The role of histidine residues in modulation of the rat P2X(2) purinoceptor by zinc and pH. J Physiol 539:347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ennion SJ, Ritson J, Evans RJ (2001) Conserved negatively charged residues are not required for ATP action at P2X(1) receptors. Biochem Biophys Res Commun 289:700–704

    Article  CAS  PubMed  Google Scholar 

  34. Ennion S, Hagan S, Evans RJ (2000) The role of positively charged amino acids in ATP recognition by human P2X(1) receptors. J Biol Chem 275:29361–29367

    Article  CAS  PubMed  Google Scholar 

  35. Dutton JL, Poronnik P, Li GH, Holding CA, Worthington RA, Vandenberg RJ, Cook DI, Barden JA, Bennett MR (2000) P2X(1) receptor membrane redistribution and down-regulation visualized by using receptor-coupled green fluorescent protein chimeras. Neuropharmacology 39:2054–2066

    Article  CAS  PubMed  Google Scholar 

  36. Boue-Grabot E, Archambault V, Seguela P (2000) A protein kinase C site highly conserved in P2X subunits controls the desensitization kinetics of P2X(2) ATP-gated channels. J Biol Chem 275:10190–10195

    Article  CAS  PubMed  Google Scholar 

  37. Newbolt A, Stoop R, Virginio C, Surprenant A, North RA, Buell G, Rassendren F (1998) Membrane topology of an ATP-gated ion channel (P2X receptor). J Biol Chem 273:15177–15182

    Article  CAS  PubMed  Google Scholar 

  38. Werner P, Seward EP, Buell GN, North RA (1996) Domains of P2X receptors involved in desensitization. Proc Natl Acad Sci U S A 93:15485–15490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Becker D, Woltersdorf R, Boldt W, Schmitz S, Braam U, Schmalzing G, Markwardt F (2008) The P2X7 carboxyl tail is a regulatory module of P2X7 receptor channel activity. J Biol Chem 283:25725–25734

    Article  CAS  PubMed  Google Scholar 

  40. Emerit MB, Baranowski C, Diaz J, Martinez A, Areias J, Alterio J, Masson J, Boue-Grabot E, Darmon M (2016) A new mechanism of receptor targeting by interaction between two classes of ligand-gated ion channels. J Neurosci 36:1456–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jo YH, Donier E, Martinez A, Garret M, Toulme E, Boue-Grabot E (2011) Cross-talk between P2X4 and gamma-aminobutyric acid, type A receptors determines synaptic efficacy at a central synapse. J Biol Chem 286:19993–20004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Toulme E, Blais D, Leger C, Landry M, Garret M, Seguela P, Boue-Grabot E (2007) An intracellular motif of P2X(3) receptors is required for functional cross-talk with GABA(A) receptors in nociceptive DRG neurons. J Neurochem 102:1357–1368

    Article  CAS  PubMed  Google Scholar 

  43. Khakh BS, Fisher JA, Nashmi R, Bowser DN, Lester HA (2005) An angstrom scale interaction between plasma membrane ATP-gated P2X2 and alpha4beta2 nicotinic channels measured with fluorescence resonance energy transfer and total internal reflection fluorescence microscopy. J Neurosci 25:6911–6920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boue-Grabot E, Toulme E, Emerit MB, Garret M (2004) Subunit-specific coupling between gamma-aminobutyric acid type A and P2X2 receptor channels. J Biol Chem 279:52517–52525

    Article  CAS  PubMed  Google Scholar 

  45. Khakh BS, Zhou X, Sydes J, Galligan JJ, Lester HA (2000) State-dependent cross-inhibition between transmitter-gated cation channels. Nature 406:405–410

    Article  CAS  PubMed  Google Scholar 

  46. Boue-Grabot E, Barajas-Lopez C, Chakfe Y, Blais D, Belanger D, Emerit MB, Seguela P (2003) Intracellular cross talk and physical interaction between two classes of neurotransmitter-gated channels. J Neurosci 23:1246–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boue-Grabot E, Emerit MB, Toulme E, Seguela P, Garret M (2004) Cross-talk and co-trafficking between rho1/GABA receptors and ATP-gated channels. J Biol Chem 279:6967–6975

    Article  CAS  PubMed  Google Scholar 

  48. Pougnet JT, Compans B, Martinez A, Choquet D, Hosy E, Boue-Grabot E (2016) P2X-mediated AMPA receptor internalization and synaptic depression is controlled by two CaMKII phosphorylation sites on GluA1 in hippocampal neurons. Sci Rep 6:31836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pougnet JT, Toulme E, Martinez A, Choquet D, Hosy E, Boue-Grabot E (2014) ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons. Neuron 83:417–430

    Article  CAS  PubMed  Google Scholar 

  50. Boue-Grabot E, Pankratov Y (2017) Modulation of central synapses by astrocyte-released ATP and postsynaptic P2X receptors. Neural Plast 2017:9454275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Marsal J, Tigyi G, Miledi R (1995) Incorporation of acetylcholine receptors and Cl− channels in Xenopus oocytes injected with Torpedo electroplaque membranes. Proc Natl Acad Sci U S A 92:5224–5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miledi R, Eusebi F, Martinez-Torres A, Palma E, Trettel F (2002) Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes. Proc Natl Acad Sci U S A 99:13238–13242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bernareggi A, Reyes-Ruiz JM, Lorenzon P, Ruzzier F, Miledi R (2011) Microtransplantation of acetylcholine receptors from normal or denervated rat skeletal muscles to frog oocytes. J Physiol 589:1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Belujon P, Baufreton J, Grandoso L, Boue-Grabot E, Batten TF, Ugedo L, Garret M, Taupignon AI (2009) Inhibitory transmission in locus coeruleus neurons expressing GABAA receptor epsilon subunit has a number of unique properties. J Neurophysiol 102:2312–2325

    Article  CAS  PubMed  Google Scholar 

  55. North RA, Jarvis MF (2013) P2X receptors as drug targets. Mol Pharmacol 83:759–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Boué-Grabot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bertin, E., Martínez, A., Boué-Grabot, E. (2020). P2X Electrophysiology and Surface Trafficking in Xenopus Oocytes. In: Pelegrín, P. (eds) Purinergic Signaling. Methods in Molecular Biology, vol 2041. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9717-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9717-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9716-9

  • Online ISBN: 978-1-4939-9717-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics