Skip to main content

Applications of MicroArrays for Mass Spectrometry (MAMS) in Single-Cell Metabolomics

  • Protocol
  • First Online:
Single Cell Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2064))

Abstract

The metabolic network is the endpoint in the flow of information that begins with the “gene” and ends with “phenotype” (observable function) of the cell. Previously, due to the variety of metabolites analyzed inside cells, the metabolomic measurements were performed with samples including multiple cells. Unfortunately, this sampling process may mask important metabolic phenomena, such as cell-to-cell heterogeneity. For these studies, we must use analytical techniques that can robustly deliver reproducible results with single-cell sensitivity. In this chapter, we summarize laser-based methods for single-cell analysis and a novel approach of MicroArrays for Mass Spectrometry (or MAMS) is described in full detail. This particular type of microarrays was tailored for the study of cells grown in liquid medium using multiple-analytical read-outs, such as optical and laser desorption/ionization (LDI) or MALDI mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10

    Article  Google Scholar 

  2. Sauer U, Zamboni N (2008) From biomarkers to integrated network responses. Nat Biotechnol 26:1090–1092

    Article  CAS  Google Scholar 

  3. Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A 43:553–566

    Article  CAS  Google Scholar 

  4. Rosenbluth MJ, Lam WA, Fletcher DA (2008) Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8:1062–1070

    Article  CAS  Google Scholar 

  5. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  Google Scholar 

  6. Altschuler SJ, Wu LF (2010) Cellular heterogeneity: do differences make a difference? Cell 141:559–563

    Article  CAS  Google Scholar 

  7. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226

    Article  CAS  Google Scholar 

  8. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4(8):577–587

    Article  CAS  Google Scholar 

  9. Bhardwaj C, Hanley L (2014) Ion sources for mass spectrometric identification and imaging of molecular species. Nat Prod Rep 31:756–767

    Article  CAS  Google Scholar 

  10. El-Baba TJ, Lutomski CA, Wang BX, Inutan ED, Trimpin S (2014) Toward high spatial resolution sampling and characterization of biological tissue surfaces using mass spectrometry. Anal Bioanal Chem 406:4053–4061

    Article  CAS  Google Scholar 

  11. Venter AR, Douglass KA, Shelley JT, Hasman G, Honarvar E (2014) Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal Chem 86:233–249

    Article  CAS  Google Scholar 

  12. Bartels B, Svatoš A (2015) Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI. Front Plant Sci 6:471

    Article  Google Scholar 

  13. Shrivas K, Setou M (2012) Imaging mass spectrometry: sample preparation, instrumentation, and applications. In: Hawkes PW (ed) Advances in imaging and electron physics, vol 171. Elsevier, Oxford, pp 145–193

    Google Scholar 

  14. McMahon JM, Dookeran NN, Todd PJ (1995) Organic ion imaging beyond the limit of static secondary-ion mass-spectrometry. J Am Soc Mass Spectrom 6:1047–1058

    Article  CAS  Google Scholar 

  15. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760

    Article  CAS  Google Scholar 

  16. Svatos A (2010) Mass spectrometric imaging of small molecules. Trends Biotechnol 28:425–434

    Article  CAS  Google Scholar 

  17. Svatoš A (2011) Single-cell metabolomics comes of age: new developments in mass spectrometry profiling and imaging. Anal Chem 83:5037–5044

    Article  Google Scholar 

  18. Li H, Smith BK, Shrestha B, Mark L, Vertes A (2015) Automated cell-by-cell tissue imaging and single-cell analysis for targeted morphologies by laser ablation electrospray ionization mass spectrometry. In: He L (ed) Mass spectrometry imaging of small molecules. Humana Press, New York, pp 117–127

    Google Scholar 

  19. Feigl P, Schueler B, Hillenkamp F (1983) LAMMA-1000, a new instrument for bulk microprobe mass analysis by pulsed laser irradiation. Int J Mass Spectrom Ion Process 47:15–18

    Article  CAS  Google Scholar 

  20. Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet-laser desorption mass-spectrometry of organic-molecules. Anal Chem 57:2935–2939

    Article  CAS  Google Scholar 

  21. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. Int J Mass Spectrom Ion Process 78:53–68

    Article  CAS  Google Scholar 

  22. Karas M, Kruger R (2003) Ion formation in MALDI: the cluster ionization mechanism. Chem Rev 103:427–439

    Article  CAS  Google Scholar 

  23. Laiko VV, Baldwin MA, Burlingame AL (2000) Atmospheric pressure matrix assisted laser desorption/ionization mass spectrometry. Anal Chem 72:652–657

    Article  CAS  Google Scholar 

  24. Li Y, Shrestha B, Vertes A (2007) Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Anal Chem 79:523–532

    Article  CAS  Google Scholar 

  25. Hoelscher D, Shroff R, Knop K, Gottschaldt M, Crecelius A, Schneider B, Heckel DG, Schubert US, Svatos A (2009) Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. Plant J 60:907–918

    Article  CAS  Google Scholar 

  26. Schober Y, Guenther S, Spengler B, Rompp A (2012) Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem 84:6293–6297

    Article  CAS  Google Scholar 

  27. Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C (2010) Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev 29:156–175

    CAS  PubMed  Google Scholar 

  28. Bendall SC, Simonds EF, Qiu P, Amir EaD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe'er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696

    Article  CAS  Google Scholar 

  29. Sampson JS, Hawkridge AM, Muddiman DC (2006) Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 17:1712–1716

    Article  CAS  Google Scholar 

  30. Robichaud G, Barry JA, Muddiman DC (2014) IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J Am Soc Mass Spectrom 25:319–328

    Article  CAS  Google Scholar 

  31. Bjarnholt N, Li B, D'alvise J, Janfelt C (2014) Mass spectrometry imaging of plant metabolites - principles and possibilities. Nat Prod Rep 31:818–837

    Article  CAS  Google Scholar 

  32. Lanekoff I, Heath BS, Liyu A, Thomas M, Carson JP, Laskin J (2012) Automated platform for high-resolution tissue imaging using Nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84:8351–8356

    Article  CAS  Google Scholar 

  33. Campbell DI, Ferreira CR, Eberlin LS, Cooks RG (2012) Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization. Anal Bioanal Chem 404:389–398

    Article  CAS  Google Scholar 

  34. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79:8098–8106

    Article  CAS  Google Scholar 

  35. Apitz I, Vogel A (2005) Material ejection in nanosecond Er: YAG laser ablation of water, liver, and skin. Appl Phys A 81:329–338

    Article  CAS  Google Scholar 

  36. Nemes P, Huang HH, Vertes A (2012) Internal energy deposition and ion fragmentation in atmospheric-pressure mid-infrared laser ablation electrospray ionization. Phys Chem Chem Phys 14:2501–2507

    Article  CAS  Google Scholar 

  37. Cahill JF, Kertesz V, Van Berkel GJ (2015) Characterization and application of a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system for mass spectrometry imaging with sub-micrometer spatial resolution. Anal Chem 87:11113–11121

    Article  CAS  Google Scholar 

  38. Amantonico A, Oh JY, Sobek J, Heinemann M, Zenobi R (2008) Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. Angew Chem Int Ed Engl 47(29):5382–5385

    Article  CAS  Google Scholar 

  39. Urban PL, Jefimovs K, Amantonico A, Fagerer SR, Schmid T, Mädler S, Puigmarti-Luis J, Goedecke N, Zenobi R (2010) High-density micro-arrays for mass spectrometry. Lab Chip 10(23):3206–3209

    Article  CAS  Google Scholar 

  40. Fagerer SR, Schmid T, Ibáñez AJ, Pabst M, Steinhoff R, Jefimovs K, Urban PL, Zenobi R (2013) Analysis of single algal cells by combining mass spectrometry with Raman and fluorescence mapping. Analyst 138:6732–6736

    Article  CAS  Google Scholar 

  41. Urban PL, Schmidt AM, Fagerer SR, Amantonico A, Ibañez AJ, Jefimovs K, Heinemann M, Zenobi R (2011) Carbon-13 labelling strategy for studying the ATP metabolism in individual yeast cells by micro-arrays for mass spectrometry. Mol BioSyst 7(10):2837–2840

    Article  CAS  Google Scholar 

  42. Ibáñez AJ, Fagerer SR, Schmidt AM, Urban PL, Jefimovs K, Geiger P, Dechant R, Heinemann M, Zenobi R (2013) Mass spectrometry-based metabolomics of single yeast cells. Proc Natl Acad Sci U S A 110(22):8790–8794

    Article  Google Scholar 

  43. Schmidt AM, Fagerer SR, Jefimovs K, Buettner F, Marro C, Siringil EC, Boehlen KL, Pabst M, Ibáñez AJ (2014) Molecular phenotypic profiling of a Saccharomyces cerevisiae strain at the single-cell level. Analyst 139(22):5709–5717

    Article  CAS  Google Scholar 

  44. Kresnowati MT, van Winden WA, Almering MJ, ten Pierick A, Ras C, Knijnenburg TA, Daran-Lapujade P, Pronk JT, Heijnen JJ, Daran JM (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2:49

    Article  CAS  Google Scholar 

  45. Brauer MJ, Yuan J, Bennett BD, Lu W, Kimball E, Botstein D, Rabinowitz JD (2006) Conservation of the metabolomic response to starvation across two divergent microbes. Proc Natl Acad Sci U S A 103:19302–19307

    Article  CAS  Google Scholar 

  46. Winder CL, Dunn WB, Schuler S, Broadhurst D, Jarvis R, Stephens GM, Goodacre R (2008) Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Anal Chem 80:2939–2948

    Article  CAS  Google Scholar 

  47. Faijes M, Mars AE, Smid EJ (2007) Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microb Cell Fact 6:27

    Article  Google Scholar 

  48. Sellick CA, Hansen R, Stephens GM, Goodacre R, Dickson AJ (2011) Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc 6:1241–1249

    Article  CAS  Google Scholar 

  49. Canelas AB, Ras C, ten Pierick A, van Dam JC, Hiejnen JJ, van Gulik WM (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4:226–239

    Article  CAS  Google Scholar 

  50. Kind T, Fiehn O (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ales Svatos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ibáñez, A.J., Svatos, A. (2020). Applications of MicroArrays for Mass Spectrometry (MAMS) in Single-Cell Metabolomics. In: Shrestha, B. (eds) Single Cell Metabolism. Methods in Molecular Biology, vol 2064. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9831-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9831-9_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9829-6

  • Online ISBN: 978-1-4939-9831-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics