Skip to main content

Neurosteroids

Behavioral Studies

  • Chapter

Part of the book series: Contemporary Endocrinology ((COE,volume 16))

Abstract

The reports of higher concentrations of certain steroids in the brain than in blood and of their accumulation in brain independently of adrenal and gonadal sources led to the discovery of steroid biosynthetic pathways in the central nervous system (CNS). As a result, the term “neurosteroids” was proposed, referring to steroids synthesized in the brain, either de novo from cholesterol or by in situ metabolism of blood-borne precursors (1). In this chapter, we summarize the behavioral effects—on affective and cognitive functions—of systemic or intra-cerebral administration of these neurosteroids. In addition to these pharmacological studies, we focus on recent physiological data indicating a possible role of certain neurosteroids in age-related memory deficits. Neurosteroids and affective responses: anxiety, stress, and aggression

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baulieu EE, Robel P. Neurosteroids: a new brain function? J Steroid Biochem Mol Biol 1990; 37: 395–403.

    Article  PubMed  CAS  Google Scholar 

  2. Gee KW. Steroid modulation of the GABA/benzodiazepine receptor-linked chloride ionophore. Mol Neurobiol 1988; 2: 291–317.

    Article  PubMed  CAS  Google Scholar 

  3. Harrison NL, Majewska MD, Harrington JW, Barker JL. Structure-activity relationships for steroid interaction with the gamma-aminobutyric acid A receptor complex. J Pharmacol Exp Ther 1987; 241: 346–353.

    PubMed  CAS  Google Scholar 

  4. Lopez-Colomè AM, McCarthy M, Beyer C. Enhancement of [3H]muscimol binding to brain synaptic membranes by progesterone and related pregnanes. Eur J Pharmacol 1990; 176: 297–303.

    Article  PubMed  Google Scholar 

  5. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 1986; 232: 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  6. Morrow AL, Pace JR, Purdy RH, Paul SM. Characterization of steroid interactions with gammaaminobutyric acid receptor-gated chloride ion channels: evidence for multiple steroid recognition sites. Mol Pharmacol 1990; 37: 263–270.

    PubMed  CAS  Google Scholar 

  7. Purdy RH, Morrow AL, Blinn JR, Paul SM. Synthesis, metabolism, and pharmacological activity of 3 alpha-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J Med Chem 1990; 33: 1572–1581.

    Article  PubMed  CAS  Google Scholar 

  8. Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E. Neurosteroids act on recombinant human GABAA receptors. Neuron 1990; 4: 759–765.

    Article  PubMed  CAS  Google Scholar 

  9. Carette B, Poulain P. Excitatory effect of dehydroepiandrosterone, its sulphate ester and pregnenolone sulphate, applied by iontophoresis and pressure, on single neurones in the septo-preoptic area of the guinea pig. Neurosci Lett 1984; 45: 205–210.

    Article  PubMed  CAS  Google Scholar 

  10. Majewska MD, Schwartz RD. Pregnenolone-sulfate: an endogenous antagonist of the gammaaminobutyric acid receptor complex in brain? Brain Res 1987; 404: 355–360.

    Article  PubMed  CAS  Google Scholar 

  11. Andrews JS, Broekkamp CLE. Procedures to identify anxiolytic or anxiogenic agents. In: Sahgal A, ed. Behavioral Neuroscience: A Practical Approach. Oxford University Press, New York, NY, 1993, pp. 37–54.

    Google Scholar 

  12. Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14: 149–167.

    Article  PubMed  CAS  Google Scholar 

  13. Pellow S, File SE. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 1986; 24: 525–529.

    Article  PubMed  CAS  Google Scholar 

  14. Wieland S, Belluzzi JD, Stein L, Lan NC. Comparative behavioral characterization of the neuroactive steroids 3 alpha-OH,5 alpha-pregnan-20-one and 3 alpha- OH,5 beta-pregnan-20-one in rodents. Psychopharmacology (Berlin) 1995; 118: 65–71.

    Article  CAS  Google Scholar 

  15. Bitran D, Hilvers RJ, Kellogg CK. Anxiolytic effects of 3 alpha-hydroxy-5 alpha[beta]-pregnan-20one: endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Res 1991; 561: 157–161.

    Article  PubMed  CAS  Google Scholar 

  16. Patchev VK, Shoaib M, Holsboer F, Almeida OF. The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience 1994; 62: 265–271.

    Article  PubMed  CAS  Google Scholar 

  17. Bitran D, Purdy RH, Kellogg CK. Anxiolytic effect of progesterone is associated with increases in cortical allopregnanolone and GABAA receptor function. Pharmacol Biochem Behav 1993; 45: 423–428.

    Article  PubMed  CAS  Google Scholar 

  18. Reddy DS, Kulkarni SK. Role of GABA-A and mitochondrial diazepam binding inhibitor receptors in the anti-stress activity of neurosteroids in mice. Psychopharmacology (Berlin) 1996; 128: 280–292.

    Article  CAS  Google Scholar 

  19. Bitran D, Shiekh M, McLeod M. Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain GABAA receptors. J Neuroendocrinol 1995; 7: 171–177.

    Article  PubMed  CAS  Google Scholar 

  20. Wu FS, Gibbs TT, Farb DH. Inverse modulation of gamma-aminobutyric acid-and glycine-induced currents by progesterone. Mol Pharmacol 1990; 37: 597–602.

    PubMed  CAS  Google Scholar 

  21. Smith SS, Waterhouse BD, Chapin JK, Woodward DJ. Progesterone alters GABA and glutamate responsiveness: a possible mechanism for its anxiolytic action. Brain Res 1987; 400: 353–359.

    Article  PubMed  CAS  Google Scholar 

  22. Melchior CL, Ritzmann RF. Pregnenolone and pregnenolone sulfate, alone and with ethanol, in mice on the plus-maze. Pharmacol Biochem Behav 1994; 48: 893–897.

    Article  PubMed  CAS  Google Scholar 

  23. Majewska MD. Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 1992; 38: 379–395.

    Article  PubMed  CAS  Google Scholar 

  24. Melchior CL, Ritzmann RF. Dehydroepiandrosterone is an anxiolytic in mice on the plus maze. Pharmacol Biochem Behav 1994; 47: 437–441.

    Article  PubMed  CAS  Google Scholar 

  25. Demirgören S, Majewska MD, Spivak CE, London ED. Receptor binding and electrophysiological effects of dehydroepiandrosterone sulfate, an antagonist of the GABAA receptor. Neuroscience 1991; 45: 127–135.

    Article  PubMed  Google Scholar 

  26. Majewska MD, Demirgören S, Spivak CE, London ED. The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res 1990; 526: 143–146.

    Article  PubMed  CAS  Google Scholar 

  27. Ben-Nathan D, Lustig S, Kobiler D, Danenberg HD, Lupu E, Feuerstein G. Dehydroepiandrosterone protects mice inoculated with West Nile virus and exposed to cold stress. J Med Virol 1992; 38: 159–166.

    Article  PubMed  CAS  Google Scholar 

  28. Vallée M, Mayo W, Dellu F, Le Moal M, Simon H, Maccari S. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 1997; 17: 2626–2636.

    PubMed  Google Scholar 

  29. Young J, Corpéchot C, Haug M, Gobaille S, Baulieu EE, Robel P. Suppressive effects of dehydroepiandrosterone and 3 beta-methyl-androst-5-en-17-one on attack towards lactating female intruders by castrated male mice. II. Brain neurosteroids. Biochem Biophys Res Commun 1991; 174: 892–897.

    Article  PubMed  CAS  Google Scholar 

  30. Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 1980; 13: 167–170.

    Article  PubMed  CAS  Google Scholar 

  31. Wieland S, Lan NC, Mirasedeghi S, Gee KW. Anxiolytic activity of the progesterone metabolite 5 alphapregnan-3 alpha-o1–20-one. Brain Res 1991; 565: 263–268.

    Article  PubMed  CAS  Google Scholar 

  32. Toubas PL, Abla KA, Cao W, Logan LG, Seale TW. Latency to enter a mirrored chamber: a novel behavioral assay for anxiolytic agents. Pharmacol Biochem Behav 1990; 35: 121–126.

    Article  PubMed  CAS  Google Scholar 

  33. Gallup GG Jr. Mirror-image stimulation. Psychol Bull 1968; 70: 782–793.

    Article  PubMed  Google Scholar 

  34. Reddy DS, Kulkarni SK. Differential anxiolytic effects of neurosteroids in the mirrored chamber behavior test in mice. Brain Res 1997; 752: 61–71.

    Article  PubMed  CAS  Google Scholar 

  35. Gee KW, McCauley LD, Lan NC. A putative receptor for neurosteroids on the GABAA receptor complex: the pharmacological properties and therapeutic potential of epalons. Crit Rev Neurobiol 1995; 9: 207–227.

    PubMed  CAS  Google Scholar 

  36. Monnet FP, Mahé V, Robel P, Baulieu EE. Neurosteroids, via sigma receptors, modulate the [3H] norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci USA 1995; 92: 3774–3778.

    Article  PubMed  CAS  Google Scholar 

  37. Treit D, Pinel JP, Fibiger HC. Conditioned defensive burying: a new paradigm for the study of anxiolytic agents. Pharmacol Biochem Behav 1981; 15: 619–626.

    Article  PubMed  CAS  Google Scholar 

  38. Broekkamp CL, Rijk HW, Joly-Gelouin D, Lloyd KL. Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol 1986; 126: 223–229.

    Article  PubMed  CAS  Google Scholar 

  39. Picazo O, Fernandez-Guasti A. Anti-anxiety effects of progesterone and some of its reduced metabolites: an evaluation using the burying behavior test. Brain Res 1995; 680: 135–141.

    Article  PubMed  CAS  Google Scholar 

  40. Geller I, Seifter J. The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia 1960; 1: 482–492.

    Article  CAS  Google Scholar 

  41. Vogel JR, Beer B, Clody DE. A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia 1971; 21: 1–7.

    Article  PubMed  CAS  Google Scholar 

  42. Brot MD, Akwa Y, Purdy RH, Koob GF, Britton KT. The anxiolytic-like effects of the neurosteroid allopregnanolone: interactions with GABAA receptors. Eur J Pharmacol 1997; 325: 1–7.

    Article  PubMed  CAS  Google Scholar 

  43. Grobin AC, Roth RH, Deutch AY. Regulation of the prefrontal cortical dopamine system by the neuroactive steroid 3a,21-dihydroxy-5a-pregnane-20-one. Brain Res 1992; 578: 351–356.

    Article  PubMed  CAS  Google Scholar 

  44. Purdy RH, Morrow AL, Moore PH, Jr., Paul SM. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci USA 1991; 88: 4553–4557.

    Article  PubMed  CAS  Google Scholar 

  45. Guo AL, Petraglia F, Criscuolo M, Ficarra G, Nappi RE, Palumbo MA, Trentini GP, Purdy RH, Genazzani AR. Evidence for a role of neurosteroids in modulation of diurnal changes and acute stress-induced corticosterone secretion in rats. Gynecol.Endocrinol. 1995; 9: 1–7.

    Article  PubMed  CAS  Google Scholar 

  46. Makara GB, Stark E. Effects of gamma-aminobutyric acid (GABA) and GABA antagonist drugs on ACTH release. Neuroendocrinology. 1974; 16: 178–190.

    Article  PubMed  CAS  Google Scholar 

  47. Woods SW, Charney DS, Loke J, Goodman WK, Redmond DE, Jr., Heninger GR. Carbon dioxide sensitivity in panic anxiety. Ventilatory and anxiogenic response to carbon dioxide in healthy subjects and patients with panic anxiety before and after alprazolam treatment. Arch Gen Psychiatry 1986; 43: 900–909.

    Article  PubMed  CAS  Google Scholar 

  48. Barbaccia ML, Roscetti G, Trabucchi M, Cuccheddu T, Concas A, Biggio G. Neurosteroids in the brain of handling-habituated and naive rats: effect of CO2 inhalation. Eur J Pharmacol 1994; 261: 317–320.

    Article  PubMed  CAS  Google Scholar 

  49. Haug M, Spetz JF, Ouss-Schlegel ML, Benton D, Brain PF. Effects of gender, gonadectomy and social status on attack directed towards female intruders by resident mice. Physiol Behav 1986; 37: 533–537.

    Article  PubMed  CAS  Google Scholar 

  50. Haug M, Ouss-Schlegel ML, Spetz JF, Brain PF, Simon V, Baulieu EE, Robel P. Suppressive effects of dehydroepiandrosterone and 3-beta-methylandrost-5-en-17-one on attack towards lactating female intruders by castrated male mice. Physiol Behav 1989; 46: 955–959.

    Article  PubMed  CAS  Google Scholar 

  51. Haug M, Simler S, Ciesielski L, Mandel P, Moutier R. Influence of castration and brain GABA levels in three strains of mice on aggression towards lactating intruders. Physiol Behav 1984; 32: 767–770.

    Article  PubMed  CAS  Google Scholar 

  52. Zimmerberg B, Brunelli SA, Hofer MA. Reduction of rat pup ultrasonic vocalizations by the neuroactive steroid allopregnanolone. Pharmacol Biochem Behav 1994; 47: 735–738.

    Article  PubMed  CAS  Google Scholar 

  53. Hofer MA, Shair H. Ultrasonic vocalization during social interaction and isolation in 2-week-old rats. Dev Psychobiol 1978; 11: 495–504.

    Article  PubMed  CAS  Google Scholar 

  54. Gardner CR. Distress vocalization in rat pups. A simple screening method for anxiolytic drugs. J Pharmacol Methods 1985; 14: 181–187.

    Article  PubMed  CAS  Google Scholar 

  55. Insel TR, Hill JL, Mayor RB. Rat pup ultrasonic isolation calls: possible mediation by the benzodiazepine receptor complex. Pharmacol Biochem Behav 1986; 24: 1263–1267.

    Article  PubMed  CAS  Google Scholar 

  56. Hodges DR, Karavolas HJ. Pituitary progestin-metabolizing enzyme activities in the aged female rat. J Steroid Biochem Mol Biol 1992; 41: 79–84.

    Article  PubMed  CAS  Google Scholar 

  57. Freeman EW, Purdy RH, Coutifaris C, Rickels K, Paul SM. Anxiolytic metabolites of progesterone: correlation with mood and performance measures following oral progesterone administration to healthy female volunteers. Neuroendocrinology 1993; 58: 478–484.

    Article  PubMed  CAS  Google Scholar 

  58. Heise GA. Learning and memory facilitators: experimental definition and current status. Trends Pharmacol Sci 1981; 2: 158–160.

    Article  CAS  Google Scholar 

  59. Sahgal A. Passive avoidance procedures. In: Sahgal A, ed. Behavioural Neuroscience: A Practical Approach. Oxford University Press, New York, NY, 1993, pp. 49–56.

    Google Scholar 

  60. Mathis C, Paul SM, Crawley JN. The neurosteroid pregnenolone sulfate blocks NMDA antagonist-induced deficits in a passive avoidance memory task. Psychopharmacology (Berlin) 1994; 116: 201–206.

    Article  CAS  Google Scholar 

  61. Cheney DL, Uzunov D, Guidotti A. Pregnenolone sulfate antagonizes dizocilpine amnesia: role for allopregnanolone. Neuroreport. 1995; 6: 1697–1700.

    Article  PubMed  CAS  Google Scholar 

  62. Romeo E, Cheney DL, Zivkovic I, Costa E, Guidotti A. Mitochondrial diazepam-binding inhibitor receptor complex agonists antagonize dizocilpine amnesia: putative role for allopregnanolone. J Pharmacol Exp Ther 1994; 270: 89–96.

    PubMed  CAS  Google Scholar 

  63. Irwin RP, Maragakis NJ, Rogawski MA, Purdy RH, Farb DH, Paul SM. Pregnenolone sulfate augments NMDA receptor mediated increases in intracellular Cat+ in cultured rat hippocampal neurons. Neurosci Lett 1992; 141: 30–34.

    Article  PubMed  CAS  Google Scholar 

  64. Bowlby MR. Pregnenolone sulfate potentiation of N-methyl-D-aspartate receptor channels in hippocampal neurons. Mol Pharmacol 1993; 43: 813–819.

    PubMed  CAS  Google Scholar 

  65. Maurice T, Junien JL, Privat A. Dehydroepiandrosterone sulfate attenuates dizocilpine-induced learning impairment in mice via sigma 1-receptors. Behav Brain Res 1997; 83: 159–164.

    Article  PubMed  CAS  Google Scholar 

  66. Isaacson RL, Varner JA, Baars JM, De Wied D. The effects of pregnenolone sulfate and ethylestrenol on retention of a passive avoidance task. Brain Res 1995; 689: 79–84.

    Article  PubMed  CAS  Google Scholar 

  67. Flood JF, Smith GE, Roberts E. Dehydroepiandrosterone and its sulfate enhance memory retention in mice. Brain Res 1988; 447: 269–278.

    Article  PubMed  CAS  Google Scholar 

  68. Flood JF, Morley JE, Roberts E. Pregnenolone sulfate enhances post-training memory processes when injected in very low doses into limbic system structures: the amygdala is by far the most sensitive. Proc Natl Acad Sci USA 1995; 92: 10806–10810.

    Article  PubMed  CAS  Google Scholar 

  69. Flood JF, Roberts E. Dehydroepiandrosterone sulfate improves memory in aging mice. Brain Res 1988; 448: 178–181.

    Article  PubMed  CAS  Google Scholar 

  70. Flood JF, Morley JE, Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci USA 1992; 89: 1567–1571.

    Article  PubMed  CAS  Google Scholar 

  71. Mathis C, Vogel E, Cagniard B, Criscuolo F, Ungerer A. The neurosteroid pregnenolone sulfate blocks deficits induced by a competitive NMDA antagonist in active avoidance and lever-press learning tasks in mice. Neuropharmacology 1996; 35: 1057–1064.

    Article  PubMed  CAS  Google Scholar 

  72. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11: 47–60.

    Article  PubMed  CAS  Google Scholar 

  73. Frye CA, Sturgis JD. Neurosteroids affect spatial/reference, working, and long-term memory of female rats. Neurobiol Learn Mem 1995; 64: 83–96.

    Article  PubMed  CAS  Google Scholar 

  74. Dellu F, Mayo W, Cherkaoui J, Le Moal M, Simon H. A two-trial memory task with automated recording: study in young and aged rats. Brain Res 1992; 588: 132–139.

    Article  PubMed  CAS  Google Scholar 

  75. Mayo W, Dellu F, Robel P, Cherkaoui J, Le Moal M, Baulieu EE, Simon H. Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res 1993; 607: 324–328.

    Article  PubMed  CAS  Google Scholar 

  76. Olton DS, Samuelson RJ. Remembrance of place passed: spatial memory in rats. J Exp Psychol 1976; 2: 97–116.

    Google Scholar 

  77. Kesner RP, Farnsworth G, DiMattia BV. Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behav Neurosci 1989; 103: 956–961.

    Article  PubMed  CAS  Google Scholar 

  78. Kelsey JE, Vargas H. Medial septal lesions disrupt spatial, but not nonspatial, working memory in rats. Behav Neurosci 1993; 107: 565–574.

    Article  PubMed  CAS  Google Scholar 

  79. Isaacson RL, Yoder PE, Varner J. The effects of pregnenolone on acquisition and retention of a food search task. Behav Neural Biol 1994; 61: 170–176.

    Article  PubMed  CAS  Google Scholar 

  80. Melchior CL, Ritzmann RF. Neurosteroids block the memory-impairing effects of ethanol in mice. Pharmacol Biochem Behav 1996; 53: 51–56.

    Article  PubMed  CAS  Google Scholar 

  81. Majewska MD. Interaction of ethanol with the GABAA receptor in the rat brain: possible involvement of endogenous steroids. Alcohol 1988; 5: 269–273.

    Article  PubMed  CAS  Google Scholar 

  82. Meziane H, Mathis C, Paul SM, Ungerer A. The neurosteroid pregnenolone sulfate reduces learning deficits induced by scopolamine and has promnestic effects in mice performing an appetitive learning task. Psychopharmacology (Berlin) 1996; 126: 323–330.

    Article  CAS  Google Scholar 

  83. Vallée M, Mayo W, Darnaudery M, Corpechot C, Young J, Koehl M, Le Moal, Baulieu EE, Robel P, Simon H. Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci USA 1997; 94: 14865–14870.

    Article  PubMed  Google Scholar 

  84. Rapp PR, Amaral DG. Individual differences in the cognitive and neurobiological consequences of normal aging. Trends Neurosci 1992; 15: 340–345.

    Article  PubMed  CAS  Google Scholar 

  85. Darnaudery, M., Koehl, M., Le Moal, M., Mayo, W. The neurosteroid pregnenolone sulfate increases cortical acetylcholine release. J Neurochem 1998; 71: 2018–2022.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mayo, W., Vallée, M., Darnaudéry, M., Moal, M.L. (1999). Neurosteroids. In: Baulieu, EE., Robel, P., Schumacher, M. (eds) Neurosteroids. Contemporary Endocrinology, vol 16. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-693-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-693-5_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-068-7

  • Online ISBN: 978-1-59259-693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics