Skip to main content
Book cover

Rat Genomics pp 357–388Cite as

Rat Genomics Applied to Psychiatric Research

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 597))

Abstract

Psychiatric diseases are very debilitating and some of them highly prevalent (e.g., depression or anxiety). The rat remains one model of choice in this discipline to investigate the neural mechanisms underlying normal and pathological traits. Genomic tools are now applied to identify genes involved in psychiatric illnesses and also to provide new biomarkers for diagnostic and prognosis, new targets for treatment and more generally to better understand the functioning of the brain. In this report, we will review rat models, behavioral approaches used to model psychiatry-related traits and the major studies published in the field including genetic mapping of quantitative trait loci (QTL), transcriptomics, proteomics and transgenic models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mormede P, Courvoisier H, Ramos A, Marissal-Arvy N, Ousova O, Desautes C et al (2002) Molecular genetic approaches to investigate individual variations in behavioral and neuroendocrine stress responses. Psychoneuro-endocrinology 27:563–583

    Article  PubMed  CAS  Google Scholar 

  2. Kas MJ, Fernandes C, Schalkwyk LC, Collier DA (2007) Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Mol Psychiatry 12:324–330

    Article  PubMed  CAS  Google Scholar 

  3. Broadhurst PL (1975) The Maudsley reactive and nonreactive strains of rats: a survey. Behav Genet 5:299–319

    Article  PubMed  CAS  Google Scholar 

  4. Hendley ED, Ohlsson WG (1991) Two new inbred rat strains derived from SHR: WKHA, hyperactive, and WKHT, hypertensive, rats. Amer J Physiol 261:H583–H589

    PubMed  CAS  Google Scholar 

  5. Moisan MP, Courvoisier H, Bihoreau MT, Gauguier D, Hendley ED, Lathrop M et al (1996) A major quantitative trait locus influences hyperactivity in the WKHA rat. Nat Genet 14:471–473

    Article  PubMed  CAS  Google Scholar 

  6. Moisan MP, Llamas B, Cook MN, Mormede P (2003) Further dissection of a genomic locus associated with behavioral activity in the Wistar-Kyoto hyperactive rat, an animal model of hyperkinesis. Mol Psychiatry 8:348–352

    Article  PubMed  CAS  Google Scholar 

  7. Fernandez-Teruel A, Escorihuela RM, Gray JA, Aguilar R, Gil L, Gimenez-Llort L et al (2002) A quantitative trait locus influencing anxiety in the laboratory rat. Genome Res 12:618–626

    PubMed  CAS  Google Scholar 

  8. Carr LG, Foroud T, Bice P, Gobbett T, Ivashina J, Edenberg H et al (1998) A quantitative trait locus for alcohol consumption in selectively bred rat lines. Alcohol Clin Exp Res 22:884–887

    PubMed  CAS  Google Scholar 

  9. Bice P, Foroud T, Bo R, Castelluccio P, Lumeng L, Li TK et al (1998) Genomic screen for QTLs underlying alcohol consumption in the P and NP rat lines. Mamm Genome 9:949–955

    Article  PubMed  CAS  Google Scholar 

  10. Radcliffe RA, Erwin VG, Draski L, Hoffmann S, Edwards J, Deng XS et al (2004) Quantitative trait loci mapping for ethanol sensitivity and neurotensin receptor density in an F2 intercross derived from inbred high and low alcohol sensitivity selectively bred rat lines. Alcohol Clin Exp Res 28:1796–1804

    Article  PubMed  CAS  Google Scholar 

  11. Ramos A, Moisan MP, Chaouloff F, de C, de P (1999) Identification of female-specific QTLs affecting an emotionality-related behavior in rats. Mol Psychiatry 4:453–462

    Article  PubMed  CAS  Google Scholar 

  12. Ahmadiyeh N, Churchill GA, Shimomura K, Solberg LC, Takahashi JS, Redei EE (2003) X-linked and lineage-dependent inheritance of coping responses to stress. Mamm Genome 14:748–757

    Article  PubMed  Google Scholar 

  13. Terenina-Rigaldie E, Moisan MP, Colas A, Beauge F, Shah KV, Jones BC et al (2003) Genetics of behaviour: phenotypic and molecular study of rats derived from high- and low-alcohol consuming lines. Pharmacogenetics 13:543–554

    Article  PubMed  Google Scholar 

  14. Bielavska E, Kren V, Musilova A, Zidek V, Pravenec M (2002) Genome scanning of the HXB/BXH sets of recombinant inbred strains of the rat for quantitative trait loci associated with conditioned taste aversion. Behav Genet 32:51–56

    Article  PubMed  Google Scholar 

  15. McEwen BS (2003) Mood disorders and allostatic load. Biol Psychiatry 54:200–207

    Article  PubMed  Google Scholar 

  16. Hall CS (1934) Emotional behavior in the rat I. Defecation and urination as measures of individual differences in emotionality. J Comp Psychol 18:385–395

    Article  Google Scholar 

  17. Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29:1193–1205

    Article  PubMed  CAS  Google Scholar 

  18. Lister RG (1990) Ethologically-based animal models of anxiety disorders. Pharmacol Ther 46:321–340

    Article  PubMed  CAS  Google Scholar 

  19. Fernandez-Teruel A, Gimenez-Llort L, Escorihuela RM, Gil L, Aguilar R, Steimer T et al (2002) Early-life handling stimulation and environmental enrichment: are some of their effects mediated by similar neural mechanisms? Pharmacol Biochem Behav 73:233–245

    Article  PubMed  CAS  Google Scholar 

  20. Ramos A, Mormède P (1998) Stress and emotionality: a multidimensional and genetic approach. Neurosci Biobehav Rev 22:33–57

    Article  PubMed  CAS  Google Scholar 

  21. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  PubMed  CAS  Google Scholar 

  22. El Yacoubi M, Vaugeois JM (2007) Genetic rodent models of depression. Curr Opin Pharmacol 7:3–7

    Article  PubMed  CAS  Google Scholar 

  23. Sousa N, Almeida OF, Wotjak CT (2006) A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav 5(Suppl 2):5–24

    PubMed  Google Scholar 

  24. Crabbe JC, Phillips TJ (2004) Pharmacogenetic studies of alcohol self-administration and withdrawal. Psychopharmacology (Berl) 174:539–560

    Article  CAS  Google Scholar 

  25. Rodd ZA, Bertsch BA, Strother WN, Le Niculescu H, Balaraman Y, Hayden E et al (2007) Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. Pharmacogenomics J 7:222–256

    Article  PubMed  CAS  Google Scholar 

  26. Overstreet DH, Rezvani AH, Djouma E, Parsian A, Lawrence AJ (2007) Depressive-like behavior and high alcohol drinking co-occur in the FH/WJD rat but appear to be under independent genetic control. Neurosci Biobehav Rev 31:103–114

    Article  PubMed  CAS  Google Scholar 

  27. Colombo G, Lobina C, Carai MA, Gessa GL (2006) Phenotypic characterization of genetically selected Sardinian alcohol-preferring (sP) and -non-preferring (sNP) rats. Addict Biol 11:324–338

    Article  PubMed  Google Scholar 

  28. Baum AE, Solberg LC, Churchill GA, Ahmadiyeh N, Takahashi JS, Redei EE (2006) Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality. Behav Brain Res 169:220–230

    Article  PubMed  Google Scholar 

  29. Liang T, Spence J, Liu L, Strother WN, Chang HW, Ellison JA et al (2003) alpha-Synuclein maps to a quantitative trait locus for alcohol preference and is differentially expressed in alcohol-preferring and -nonpreferring rats. Proc Natl Acad Sci USA 100:4690–4695

    Article  PubMed  CAS  Google Scholar 

  30. Chiavegatto S, Izidio GS, Mendes-Lana A, Aneas I, Freitas TA, Torrao AS et al (2009) Expression of alpha-synuclein is increased in the hippocampus of rats with high levels of innate anxiety. Mol Psychiatry 14: 894–905

    Google Scholar 

  31. Foroud T, Wetherill LF, Liang T, Dick DM, Hesselbrock V, Kramer J et al (2007) Association of alcohol craving with alpha-synuclein (SNCA). Alcohol Clin Exp Res 31:537–545

    Article  PubMed  CAS  Google Scholar 

  32. Pandey SC, Zhang H, Roy A, Xu T (2005) Deficits in amygdaloid cAMP-responsive element-binding protein signaling play a role in genetic predisposition to anxiety and alcoholism. J Clin Invest 115:2762–2773

    Article  PubMed  Google Scholar 

  33. Primeaux SD, Wilson SP, Bray GA, York DA, Wilson MA (2006) Overexpression of neuropeptide Y in the central nucleus of the amygdala decreases ethanol self-administration in “anxious” rats. Alcohol Clin Exp Res 30:791–801

    Article  PubMed  CAS  Google Scholar 

  34. Kimpel MW, Strother WN, McClintick JN, Carr LG, Liang T, Edenberg HJ et al (2007) Functional gene expression differences between inbred alcohol-preferring and -non-preferring rats in five brain regions. Alcohol 41:95–132

    Article  PubMed  CAS  Google Scholar 

  35. Mottagui-Tabar S, Prince JA, Wahlestedt C, Zhu G, Goldman D, Heilig M (2005) A novel single nucleotide polymorphism of the neuropeptide Y (NPY) gene associated with alcohol dependence. Alcohol Clin Exp Res 29:702–707

    Article  PubMed  CAS  Google Scholar 

  36. Llamas B, Contesse V, Guyonnet-Duperat V, Vaudry H, Mormede P, Moisan MP (2005) QTL mapping for traits associated with stress neuroendocrine reactivity in rats. Mamm Genome 16:505–515

    Article  PubMed  CAS  Google Scholar 

  37. Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, Turek FW et al (2006) Genetic analysis of the stress-responsive adrenocortical axis. Physiol Genomics 27:362–369

    Article  PubMed  CAS  Google Scholar 

  38. Ousova O, Guyonnet-Duperat V, Iannuccelli N, Bidanel JP, Milan D, Genet C et al (2004) Corticosteroid binding globulin: a new target for cortisol-driven obesity. Mol Endocrinol 18:1687–1696

    Article  PubMed  CAS  Google Scholar 

  39. Carr LG, Kimpel MW, Liang T, McClintick JN, McCall K, Morse M et al (2007) Identification of candidate genes for alcohol preference by expression profiling of congenic rat strains. Alcohol Clin Exp Res 31:1089–1098

    Article  PubMed  CAS  Google Scholar 

  40. Kobeissy FH, Sadasivan S, Liu J, Gold MS, Wang KK (2008) Psychiatric research: psychoproteomics, degradomics and systems biology. Expert Rev Proteomics 5:293–314

    Article  PubMed  CAS  Google Scholar 

  41. Nestler EJ (2001) Psychogenomics: opportunities for understanding addiction. J Neurosci 21:8324–8327

    PubMed  CAS  Google Scholar 

  42. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ et al (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404

    Article  PubMed  CAS  Google Scholar 

  43. McClung CA, Nestler EJ (2008) Neuroplasticity mediated by altered gene expression. Neuropsychopharmacology 33:3–17

    Article  PubMed  CAS  Google Scholar 

  44. Teague CR, Dhabhar FS, Barton RH, Beckwith-Hall B, Powell J, Cobain M et al (2007) Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. J Proteome Res 6:2080–2093

    Article  PubMed  CAS  Google Scholar 

  45. Ruiz-Opazo N, Kosik KS, Lopez LV, Bagamasbad P, Ponce LR, Herrera VL (2004) Attenuated hippocampus-dependent learning and memory decline in transgenic TgAPPswe Fischer-344 rats. Mol Med 10:36–44

    Article  PubMed  CAS  Google Scholar 

  46. Gimenez-Llort L, Schiffmann SN, Shmidt T, Canela L, Camon L, Wassholm M et al (2007) Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem 87:42–56

    Article  PubMed  CAS  Google Scholar 

  47. Homberg JR, Olivier JD, Smits BM, Mul JD, Mudde J, Verheul M et al (2007) Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system. Neuroscience 146:1662–1676

    Article  PubMed  CAS  Google Scholar 

  48. Olivier JD, Van Der Hart MG, Van Swelm RP, Dederen PJ, Homberg JR, Cremers T et al (2008) A study in male and female 5-HT transporter knockout rats: an animal model for anxiety and depression disorders. Neuroscience 152:573–584

    Article  PubMed  CAS  Google Scholar 

  49. Potenza MN, Brodkin ES, Joe B, Luo X, Remmers EF, Wilder RL et al (2004) Genomic regions controlling corticosterone levels in rats. Biol Psychiatry 55:634–641

    Article  PubMed  CAS  Google Scholar 

  50. Bilusic M, Bataillard A, Tschannen MR, Gao L, Barreto NE, Vincent M et al (2004) Mapping the genetic determinants of hypertension, metabolic diseases, and related phenotypes in the lyon hypertensive rat. Hypertension 44:695–701

    Article  PubMed  CAS  Google Scholar 

  51. Marissal-Arvy N, Lombes M, Petterson J, Moisan MP, Mormede P (2004) Gain of function mutation in the mineralocorticoid receptor of the Brown Norway rat. J Biol Chem 279:39232–39239

    Article  PubMed  CAS  Google Scholar 

  52. Klimes I, Weston K, Gasperikova D, Kovacs P, Kvetnansky R, Jezova D et al (2005) Mapping of genetic determinants of the sympathoneural response to stress. Physiol Genomics 20:183–187

    Article  PubMed  CAS  Google Scholar 

  53. Cui ZH, Ikeda K, Kawakami K, Gonda T, Nabika T, Masuda J (2003) Exaggerated response to restraint stress in rats congenic for the chromosome 1 blood pressure quantitative trait locus. Clin Exp Pharmacol Physiol 30:464–469

    Article  PubMed  CAS  Google Scholar 

  54. Conti LH, Jirout M, Breen L, Vanella JJ, Schork NJ, Printz MP (2004) Identification of quantitative trait Loci for anxiety and locomotion phenotypes in rat recombinant inbred strains. Behav Genet 34:93–103

    Article  PubMed  Google Scholar 

  55. Mormede P, Moneva E, Bruneval C, Chaouloff F, Moisan MP (2002) Marker-assisted selection of a neuro-behavioural trait related to behavioural inhibition in the SHR strain. an animal model of ADHD. Genes Brain Behav 1:111–116

    Article  PubMed  CAS  Google Scholar 

  56. Terenina-Rigaldie E, Jones BC, Mormede P (2003) Pleiotropic effect of a locus on chromosome 4 influencing alcohol drinking and emotional reactivity in rats. Genes Brain Behav 2:125–131

    Article  PubMed  CAS  Google Scholar 

  57. Vendruscolo LF, Terenina-Rigaldie E, Raba F, Ramos A, Takahashi RN, Mormede P (2006) Evidence for a female-specific effect of a chromosome 4 locus on anxiety-related behaviors and ethanol drinking in rats. Genes Brain Behav 5:441–450

    Article  PubMed  CAS  Google Scholar 

  58. Ahmadiyeh N, Churchill GA, Solberg LC, Baum AE, Shimomura K, Takahashi JS et al (2005) Lineage is an epigenetic modifier of QTL influencing behavioral coping with stress. Behav Genet 35:189–198

    Article  PubMed  Google Scholar 

  59. Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, Turek FW et al (2004) Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm Genome 15:648–662

    Article  PubMed  Google Scholar 

  60. Palmer AA, Breen LL, Flodman P, Conti LH, Spence MA, Printz MP (2003) Identification of quantitative trait loci for prepulse inhibition in rats. Psychopharmacology (Berl) 165:270–279

    CAS  Google Scholar 

  61. Vendruscolo LF, Terenina-Rigaldie E, Raba F, Ramos A, Takahashi RN, Mormede P (2006) A QTL on rat chromosome 7 modulates prepulse inhibition, a neuro-behavioral trait of ADHD, in a Lewis × SHR intercross. Behav Brain Funct 2:21

    Article  PubMed  CAS  Google Scholar 

  62. Ruiz-Opazo N, Tonkiss J (2006) Genome-wide scan for quantitative trait loci influencing spatial navigation and social recognition memory in Dahl rats. Physiol Genomics 26:145–151

    Article  PubMed  CAS  Google Scholar 

  63. Carr LG, Habegger K, Spence JP, Liu L, Lumeng L, Foroud T (2006) Development of congenic rat strains for alcohol consumption derived from the alcohol-preferring and nonpreferring rats. Behav Genet 36:285–290

    Article  PubMed  Google Scholar 

  64. Foroud T, Bice P, Castelluccio P, Bo R, Miller L, Ritchotte A et al (2000) Identification of quantitative trait loci influencing alcohol consumption in the high alcohol drinking and low alcohol drinking rat lines. Behav Genet 30:131–140

    Article  PubMed  CAS  Google Scholar 

  65. Foroud T, Bice P, Castelluccio P, Bo R, Ritchotte A, Stewart R et al (2002) Mapping of QTL influencing saccharin consumption in the selectively bred alcohol-preferring and -nonpreferring rat lines. Behav Genet 32:57–67

    Article  PubMed  CAS  Google Scholar 

  66. Foroud T, Ritchotte A, Spence J, Liu L, Lumeng L, Li TK et al (2003) Confirmation of alcohol preference quantitative trait loci in the replicate high alcohol drinking and low alcohol drinking rat lines. Psychiatr Genet 13:155–161

    Article  PubMed  Google Scholar 

  67. Radcliffe RA, Bludeau P, Deng XS, Erwin VG, Deitrich RA (2007) Short-term selection for acute ethanol tolerance and sensitization from an F2 population derived from the high and low alcohol-sensitive selectively bred rat lines. Alcohol 41:557–566

    Article  PubMed  CAS  Google Scholar 

  68. Radcliffe RA, Bludeau P, Asperi W, Fay T, Deng XS, Erwin VG et al (2006) Confirmation of quantitative trait loci for ethanol sensitivity and neurotensin receptor density in crosses derived from the inbred high and low alcohol sensitive selectively bred rat lines. Psychopharmacology (Berl) 188:343–354

    Article  CAS  Google Scholar 

  69. Nakatani N, Aburatani H, Nishimura K, Semba J, Yoshikawa T (2004) Comprehensive expression analysis of a rat depression model. Pharmacogenomics J 4:114–126

    Article  PubMed  CAS  Google Scholar 

  70. Kohen R, Kirov S, Navaja GP, Happe HK, Hamblin MW, Snoddy JR et al (2005) Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats. Pharmacogenomics J 5:278–291

    Article  PubMed  CAS  Google Scholar 

  71. Kroes RA, Panksepp J, Burgdorf J, Otto NJ, Moskal JR (2006) Modeling depression: social dominance-submission gene expression patterns in rat neocortex. Neuroscience 137:37–49

    Article  PubMed  CAS  Google Scholar 

  72. Pearson KA, Stephen A, Beck SG, Valentino RJ (2006) Identifying genes in monoamine nuclei that may determine stress vulnerability and depressive behavior in Wistar-Kyoto rats. Neuropsychopharmacology 31:2449–2461

    Article  PubMed  CAS  Google Scholar 

  73. Orsetti M, Di Brisco F, Canonico PL, Genazzani AA, Ghi P (2008) Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression. Eur J NeuroSci 27:2156–2164

    Article  PubMed  CAS  Google Scholar 

  74. Gass JT, Olive MF (2008) Transcriptional profiling of the rat frontal cortex following administration of the mGlu5 receptor antagonists MPEP and MTEP. Eur J Pharmacol 584:253–262

    Article  PubMed  CAS  Google Scholar 

  75. Khawaja X, Xu J, Liang JJ, Barrett JE (2004) Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J Neurosci Res 75:451–460

    Article  PubMed  CAS  Google Scholar 

  76. Carboni L, Vighini M, Piubelli C, Castelletti L, Milli A, Domenici E (2006) Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants: CRF1 and NK1 receptor antagonists. Eur Neuropsycho-pharmacol 16:521–537

    Article  PubMed  CAS  Google Scholar 

  77. Mu J, Xie P, Yang ZS, Yang DL, Lv FJ, Luo TY et al (2007) Neurogenesis and major depression: implications from proteomic analyses of hippocampal proteins in a rat depression model. Neurosci Lett 416:252–256

    Article  PubMed  CAS  Google Scholar 

  78. Kim HG, Kim KL (2007) Decreased hippocampal cholinergic neurostimulating peptide precursor protein associated with stress exposure in rat brain by proteomic analysis. J Neurosci Res 85:2898–2908

    Article  PubMed  CAS  Google Scholar 

  79. Worst TJ, Tan JC, Robertson DJ, Freeman WM, Hyytia P, Kiianmaa K et al (2005) Transcriptome analysis of frontal cortex in alcohol-preferring and nonpreferring rats. J Neurosci Res 80:529–538

    Article  PubMed  CAS  Google Scholar 

  80. Edenberg HJ, Strother WN, McClintick JN, Tian H, Stephens M, Jerome RE et al (2005) Gene expression in the hippocampus of inbred alcohol-preferring and -nonpreferring rats. Genes Brain Behav 4:20–30

    PubMed  CAS  Google Scholar 

  81. Hargreaves GA, Quinn H, Kashem MA, Matsumoto I, McGregor IS (2008) Proteomic analysis demonstrates adolescent vulnerability to lasting hippocampal changes following chronic alcohol consumption. Alcohol Clin Exp Res 33:86–94

    Article  PubMed  CAS  Google Scholar 

  82. Kabbaj M, Evans S, Watson SJ, Akil H (2004) The search for the neurobiological basis of vulnerability to drug abuse: using microarrays to investigate the role of stress and individual differences. Neuropharmacology 47(Suppl. 1):111–122

    Article  PubMed  CAS  Google Scholar 

  83. Ahmed SH, Lutjens R, van der Stap LD, Lekic D, Romano-Spica V, Morales M et al (2005) Gene expression evidence for remodeling of lateral hypothalamic circuitry in cocaine addiction. Proc Natl Acad Sci USA 102:11533–11538

    Article  PubMed  CAS  Google Scholar 

  84. McClung CA, Nestler EJ, Zachariou V (2005) Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci 25:6005–6015

    Article  PubMed  CAS  Google Scholar 

  85. Kobeissy FH, Warren MW, Ottens AK, Sadasivan S, Zhang Z, Gold MS et al (2008) Psychoproteomic analysis of rat cortex following acute methamphetamine exposure. J Proteome Res 7:1971–1983

    Article  PubMed  CAS  Google Scholar 

  86. Li X, Wang H, Qiu P, Luo H (2008) Proteomic profiling of proteins associated with methamphetamine-induced neurotoxicity in different regions of rat brain. Neurochem Int 52:256–264

    Article  PubMed  CAS  Google Scholar 

  87. Burger C, Lopez MC, Baker HV, Mandel RJ, Muzyczka N (2008) Genome-wide analysis of aging and learning-related genes in the hippocampal dentate gyrus. Neurobiol Learn Mem 89:379–396

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pierre Moisan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moisan, MP., Ramos, A. (2010). Rat Genomics Applied to Psychiatric Research. In: Anegon, I. (eds) Rat Genomics. Methods in Molecular Biology, vol 597. Humana Press. https://doi.org/10.1007/978-1-60327-389-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-389-3_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-388-6

  • Online ISBN: 978-1-60327-389-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics