Skip to main content

In Utero Electroporation to Study Mouse Brain Development

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1082))

Abstract

In utero electroporation is a rapid and powerful technique to study the development of many brain regions. This approach presents several advantages over other methods to study specific steps of brain development in vivo, from proliferation to synaptic integration. Here, we describe in detail the individual steps necessary to carry out the technique. We also highlight the variations that can be implemented to target different cerebral structures and to study specific steps of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen F, LoTurco J (2012) A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J Neurosci Methods 207(2):172–180

    Article  PubMed  CAS  Google Scholar 

  2. Iguchi T, Yagi H, Wang CC, Sato M (2012) A tightly controlled conditional knockdown system using the Tol2 transposon-mediated technique. PLoS One 7(3):e33380

    Article  PubMed  CAS  Google Scholar 

  3. Pacary E, Haas MA, Wildner H, Azzarelli R, Bell DM, Abrous DN, Guillemot F (2012) Visualization and genetic manipulation of dendrites and spines in the mouse cerebral cortex and hippocampus using in utero electroporation. J Vis Exp (65):e4163. doi:10.3791/4163

  4. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246

    Article  PubMed  CAS  Google Scholar 

  5. Pacary E, Heng J, Azzarelli R, Riou P, Castro D, Lebel-Potter M, Parras C, Bell DM, Ridley AJ, Parsons M, Guillemot F (2011) Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron 69(6):1069–1084

    Article  PubMed  CAS  Google Scholar 

  6. Shimogori T, Ogawa M (2008) Gene application with in utero electroporation in mouse embryonic brain. Dev Growth Differ 50(6):499–506

    Article  PubMed  CAS  Google Scholar 

  7. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103(4):865–872

    Article  PubMed  CAS  Google Scholar 

  8. Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K, Lu L, Tomisato S, Jaaro-Peled H, Seshadri S, Hiyama H, Huang B, Kohda K, Noda Y, O’Donnell P, Nakajima K, Sawa A, Nabeshima T (2010) Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 65(4):480–489

    Article  PubMed  CAS  Google Scholar 

  9. Bai J, Ramos RL, Paramasivam M, Siddiqi F, Ackman JB, LoTurco JJ (2008) The role of DCX and LIS1 in migration through the lateral cortical stream of developing forebrain. Dev Neurosci 30(1–3):144–156

    Article  PubMed  CAS  Google Scholar 

  10. Remedios R, Huilgol D, Saha B, Hari P, Bhatnagar L, Kowalczyk T, Hevner RF, Suda Y, Aizawa S, Ohshima T, Stoykova A, Tole S (2007) A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex. Nat Neurosci 10(9):1141–1150

    Article  PubMed  CAS  Google Scholar 

  11. Soma M, Aizawa H, Ito Y, Maekawa M, Osumi N, Nakahira E, Okamoto H, Tanaka K, Yuasa S (2009) Development of the mouse amygdala as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 513(1):113–128

    Article  PubMed  CAS  Google Scholar 

  12. Nakahira E, Yuasa S (2005) Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 483(3):329–340

    Article  PubMed  Google Scholar 

  13. Navarro-Quiroga I, Chittajallu R, Gallo V, Haydar TF (2007) Long-term, selective gene expression in developing and adult hippocampal pyramidal neurons using focal in utero electroporation. J Neurosci 27(19):5007–5011

    Article  PubMed  CAS  Google Scholar 

  14. Garcia-Frigola C, Carreres MI, Vegar C, Herrera E (2007) Gene delivery into mouse retinal ganglion cells by in utero electroporation. BMC Dev Biol 7:103

    Article  PubMed  Google Scholar 

  15. Petros TJ, Rebsam A, Mason CA (2009) In utero and ex vivo electroporation for gene expression in mouse retinal ganglion cells. J Vis Exp (31):e1333. doi:10.3791/1333

  16. Punzo C, Cepko CL (2008) Ultrasound-guided in utero injections allow studies of the development and function of the eye. Dev Dyn 237(4):1034–1042

    Article  PubMed  CAS  Google Scholar 

  17. Borrell V, Yoshimura Y, Callaway EM (2005) Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J Neurosci Methods 143(2):151–158

    Article  PubMed  CAS  Google Scholar 

  18. Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25(9):930–945

    Article  PubMed  CAS  Google Scholar 

  19. Rouaux C, Arlotta P (2010) Fezf2 directs the differentiation of corticofugal neurons from striatal progenitors in vivo. Nat Neurosci 13(11):1345–1347

    Article  PubMed  CAS  Google Scholar 

  20. Gelman DM, Martini FJ, Nobrega-Pereira S, Pierani A, Kessaris N, Marin O (2009) The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 29(29):9380–9389

    Article  PubMed  CAS  Google Scholar 

  21. Bonnin A, Torii M, Wang L, Rakic P, Levitt P (2007) Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci 10(5):588–597

    Article  PubMed  CAS  Google Scholar 

  22. Kataoka A, Shimogori T (2008) Fgf8 controls regional identity in the developing thalamus. Development 135(17):2873–2881

    Article  PubMed  CAS  Google Scholar 

  23. Vue TY, Bluske K, Alishahi A, Yang LL, Koyano-Nakagawa N, Novitch B, Nakagawa Y (2009) Sonic hedgehog signaling controls thalamic progenitor identity and nuclei specification in mice. J Neurosci 29(14):4484–4497

    Article  PubMed  CAS  Google Scholar 

  24. Kawauchi D, Taniguchi H, Watanabe H, Saito T, Murakami F (2006) Direct visualization of nucleogenesis by precerebellar neurons: involvement of ventricle-directed, radial fibre-associated migration. Development 133(6):1113–1123

    Article  PubMed  CAS  Google Scholar 

  25. Nishiyama J, Hayashi Y, Nomura T, Miura E, Kakegawa W, Yuzaki M (2012) Selective and regulated gene expression in murine Purkinje cells by in utero electroporation. Eur J Neurosci 36(7):2867–2876

    Article  PubMed  Google Scholar 

  26. Okada T, Keino-Masu K, Masu M (2007) Migration and nucleogenesis of mouse precerebellar neurons visualized by in utero electroporation of a green fluorescent protein gene. Neurosci Res 57(1):40–49

    Article  PubMed  CAS  Google Scholar 

  27. Alvarez-Maya I, Navarro-Quiroga I, Meraz-Rios MA, Aceves J, Martinez-Fong D (2001) In vivo gene transfer to dopamine neurons of rat substantia nigra via the high-affinity neurotensin receptor. Mol Med 7(3):186–192

    PubMed  CAS  Google Scholar 

  28. Willett RT, Greene LA (2011) Gata2 is required for migration and differentiation of retinorecipient neurons in the superior colliculus. J Neurosci 31(12):4444–4455

    Article  PubMed  CAS  Google Scholar 

  29. Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071–1074

    Article  PubMed  CAS  Google Scholar 

  30. Lange C, Huttner WB, Calegari F (2009) Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5(3):320–331

    Article  PubMed  CAS  Google Scholar 

  31. Weimer JM, Yokota Y, Stanco A, Stumpo DJ, Blackshear PJ, Anton ES (2009) MARCKS modulates radial progenitor placement, proliferation and organization in the developing cerebral cortex. Development 136(17):2965–2975

    Article  PubMed  CAS  Google Scholar 

  32. Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C, Philpott A, Roberts JM, Guillemot F (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20(11):1511–1524

    Article  PubMed  CAS  Google Scholar 

  33. Singh KK, De Rienzo G, Drane L, Mao Y, Flood Z, Madison J, Ferreira M, Bergen S, King C, Sklar P, Sive H, Tsai LH (2011) Common DISC1 polymorphisms disrupt Wnt/GSK3beta signaling and brain development. Neuron 72(4):545–558

    Article  PubMed  CAS  Google Scholar 

  34. Elias LA, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448(7156):901–907

    Article  PubMed  CAS  Google Scholar 

  35. Cubelos B, Sebastian-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, Dopazo A, Alvarez-Dolado M, Redondo JM, Bovolenta P, Walsh CA, Nieto M (2010) Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 66(4):523–535

    Article  PubMed  CAS  Google Scholar 

  36. Fang WQ, Ip JP, Li R, Ng YP, Lin SC, Chen Y, Fu AK, Ip NY (2011) Cdk5-mediated phosphorylation of Axin directs axon formation during cerebral cortex development. J Neurosci 31(38):13613–13624

    Article  PubMed  CAS  Google Scholar 

  37. Yi JJ, Barnes AP, Hand R, Polleux F, Ehlers MD (2010) TGF-beta signaling specifies axons during brain development. Cell 142(1):144–157

    Article  PubMed  CAS  Google Scholar 

  38. Elias GM, Elias LA, Apostolides PF, Kriegstein AR, Nicoll RA (2008) Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development. Proc Natl Acad Sci USA 105(52):20953–20958

    Article  PubMed  CAS  Google Scholar 

  39. Trimbuch T, Beed P, Vogt J, Schuchmann S, Maier N, Kintscher M, Breustedt J, Schuelke M, Streu N, Kieselmann O, Brunk I, Laube G, Strauss U, Battefeld A, Wende H, Birchmeier C, Wiese S, Sendtner M, Kawabe H, Kishimoto-Suga M, Brose N, Baumgart J, Geist B, Aoki J, Savaskan NE, Brauer AU, Chun J, Ninnemann O, Schmitz D, Nitsch R (2009) Synaptic PRG-1 modulates excitatory transmission via lipid phosphate-mediated signaling. Cell 138(6):1222–1235

    Article  PubMed  CAS  Google Scholar 

  40. Garcia-Marques J, Lopez-Mascaraque L (2013) Clonal Identity Determines Astrocyte Cortical Heterogeneity. Cereb Cortex 23(6):1463–1472

    Article  PubMed  Google Scholar 

  41. Subramanian L, Sarkar A, Shetty AS, Muralidharan B, Padmanabhan H, Piper M, Monuki ES, Bach I, Gronostajski RM, Richards LJ, Tole S (2011) Transcription factor Lhx2 is necessary and sufficient to suppress astrogliogenesis and promote neurogenesis in the developing hippocampus. Proc Natl Acad Sci USA 108(27):E265–E274

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pacary, E., Guillemot, F. (2014). In Utero Electroporation to Study Mouse Brain Development. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 1082. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-655-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-655-9_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-654-2

  • Online ISBN: 978-1-62703-655-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics