Skip to main content

View Invariant Gait Recognition

  • Chapter
Handbook of Remote Biometrics

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

Recognition by gait is of particular interest since it is the biometric that is available at the lowest resolution, or when other biometrics are (intentionally) obscured. Gait as a biometric has now shown increasing recognition capability. There are many approaches and these show that recognition can achieve excellent performance on current large databases. The majority of these approaches are planar 2D, largely since the early large databases featured subjects walking in a plane normal to the camera view. To extend deployment capability, we need viewpoint invariant gait biometrics. We describe approaches where viewpoint invariance is achieved by 3D approaches or in 2D. In the first group, the identification relies on parameters extracted from the 3D body deformation during walking. These methods use several video cameras and the 3D reconstruction is achieved after a camera calibration process. On the other hand, the 2D gait biometric approaches use a single camera, usually positioned perpendicular to the subject’s walking direction. Because in real surveillance scenarios a system that operates in an unconstrained environment is necessary, many of the recent gait analysis approaches are orientated toward view-invariant gait recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casia gait database. online (2006). http://www.sinobiometrics.com

  2. Attwells, R., Birrell, S., Hooper, R., Mansfield, N.: Influence of carrying heavy loads on soldiers’ posture, movements and gait. Ergonomics 49(14), 1527–1537(11) (2006). doi:10.1080/00140130600757237. http://www.ingentaconnect.com/content/tandf/terg/2006/00000049/00000014/art00007

    Article  Google Scholar 

  3. BenAbdelkader, C., Davis, L.S., Cutler, R.: Motion-based recognition of people in eigengait space. In: FGR, pp. 267–274 (2002)

    Google Scholar 

  4. Bhanu, B., Han, J.: Human recognition on combining kinematic and stationary features. In: Proceedings of Audio- and Video-Based Biometric Person Authentication, Lecture Notes in Computer Science, vol. 2688, pp. 600–608. Springer-Verlag, New York (2003)

    Google Scholar 

  5. Bouchrika, I., Nixon, M.S.: Model-based feature extraction for gait analysis and recognition. In: Mirage: Computer Vision / Computer Graphics Collaboration Techniques and Applications, vol. 4418, pp. 150–160 (2007)

    Article  Google Scholar 

  6. Boyd, J.E.: Synchronization of oscillations for machine perception of gaits. Comput. Vis. Image Underst. 96(1), 35–59 (2004)

    Article  Google Scholar 

  7. Carter, J.N., Nixon, M.S.: On measuring gait signatures which are invariant to their trajectory. Measurement Contrl. 32(9), 265–269 (1999)

    Google Scholar 

  8. Chen, S., Gao, Y.: An invariant appearance model for gait recognition. Multimedia and Expo, 2007 IEEE International Conference on pp. 1375–1378 (2–5 July 2007)

    Google Scholar 

  9. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models–-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  10. Cunado, D., Nixon, M.S., Carter, J.N.: Automatic gait recognition via model-based evidence gathering. In: L. O’Gorman, S. Shellhammer (eds.) Proceedings AutoID ’99: IEEE Workshop on Identification Advanced Technologies, pp. 27–30. IEEE (1999)

    Google Scholar 

  11. Cunado, D., Nixon, M.S., Carter, J.N.: Automatic extraction and description of human gait models for recognition purposes. Comput. Vis. Image Underst. 90(1), 1–41 (2003)

    Article  Google Scholar 

  12. Fua, P.: Markerless 3d human motion capture from images. In: S.Z. Li (ed.) July 2009. Encyclopedia of Biometrics. (ISBN 978-0-387-73003-5), Springer

    Google Scholar 

  13. Goffredo, M., Seely, R.D., Carter, J.N., Nixon, M.S.: Tech. Rep. n.1456, University of Southampton (2007)

    Google Scholar 

  14. Goffredo, M., Spencer, N., Pearce, D., Carter, J.N., Nixon, M.S.: Human perambulation as a self calibrating biometric. In: S.K. Zhou, W. Zhao, X. Tang, S. Gong (eds.) AMFG, Lecture Notes in Computer Science, vol. 4778, pp. 139–153. Springer, New York (2007)

    Google Scholar 

  15. Gross, R., Shi, J.: The cmu motion of body (mobo) database. Tech. Rep. CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (2001)

    Google Scholar 

  16. Hayfron-Acquah, J.B., Nixon, M.S., Carter, J.N.: Automatic gait recognition by symmetry analysis. Pattern Recogn. Lett. 24(13), 2175–2183 (2003)

    Article  Google Scholar 

  17. Hong, S., Lee, H., Nizami, I., Kim, E.: A new gait representation for human identification: Mass vector. Industrial Electronics and Applications, 2007. ICIEA 2007. 2nd IEEE Conference on pp. 669–673 (23–25 May 2007)

    Google Scholar 

  18. Huang, P., Harris, C., Nixon, M.: Recognising humans by gait via parametric canonical space. J. Artif. Intelli. Eng. 13(4), 359–366 (1999)

    Article  Google Scholar 

  19. Johnson, A.Y., Bobick, A.F.: A multi-view method for gait recognition using static body parameters. In: AVBPA ’01: Proceedings of the Third International Conference on Audio- and Video-Based Biometric Person Authentication, pp. 301–311. Springer-Verlag, London, UK (2001)

    Google Scholar 

  20. Kale, A., Chowdhury, A., Chellappa, R.: Towards a view invariant gait recognition algorithm. Proceedings. IEEE Conference on Advanced Video and Signal Based Surveillance, 2003. pp. 143–150 (21–22 July 2003)

    Google Scholar 

  21. Kale, A., Roychowdhury, A., Chellappa, R.: Fusion of gait and face for human identification. Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE International Conference on 5, V–901–4 vol.5 (17–21 May 2004)

    Google Scholar 

  22. Kale, A.A., Cuntoor, N.P., Yegnanarayana, B., Rajagopalan, A.N., Chellappa, R.: Gait analysis for human identification. In: AVBPA, pp. 706–714 (2003)

    Google Scholar 

  23. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)

    Article  Google Scholar 

  24. Knapik, J., Harman, E., Reynolds, K.: Load carriage using packs: A review of physiological, biomechanical and medical aspects. Appl. Ergon. 27(3), 207–216 (1996). http://www.sciencedirect.com/science/article/B6V1W-3Y0RS9P-9/2/acc0b9e0629a8cf5950fa55b4e5fc2f0

    Article  Google Scholar 

  25. Larsen, P.K., Simonsen, E.B., Lynnerup, N.: Gait analysis in forensic medicine. In: J.A. Beraldin, F. Remondino, M.R. Shortis (eds.) Videometrics IX, vol. 6491, p. 64910 M. SPIE (2007)

    Google Scholar 

  26. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Trans. Patt. Anal. Mach. Intell. 16(2), 150–162 (1994)

    Article  Google Scholar 

  27. Lee, L., Grimson, W.: Gait analysis for recognition and classification. Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on pp. 148–155 (20-21 May 2002)

    Google Scholar 

  28. Liu, H., Chellappa, R.: Markerless monocular tracking of articulated human motion. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 693–696 (2007)

    Google Scholar 

  29. Mardia, K., Jupp, P.: Directional Statistics. Wiley, New York (2000)

    MATH  Google Scholar 

  30. Middleton, L., Wagg, D.K., Bazin, A.I., Carter, J.N., Nixon, M.S.: A smart environment for biometric capture. In: IEEE International Conference on Automation Science and Engineering, pp. 57–62 (2006)

    Google Scholar 

  31. Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. J. Bone Joint Surg. 46, 335 (1964)

    Google Scholar 

  32. Nixon, M.S., Carter, J.N.: Automatic recognition by gait. Proc. IEEE 94(11), 2013–2024 (2006)

    Article  Google Scholar 

  33. Niyogi, S.A., Adelson, E.H.: Analyzing and recognizing walking figures in xyt. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 469–474 (1994)

    Google Scholar 

  34. Orrite-Uruñuela, C., del Rincón, J.M., Herrero-Jaraba, J.E., Rogez, G.: 2d silhouette and 3d skeletal models for human detection and tracking. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 244–247 (2004)

    Article  Google Scholar 

  35. Pascoe, D.D., Pascoe, D.E., Wang, Y., Shim, D.M., Kim, C.K.: Influence of carrying book bags on gait cycle and posture of youths. Ergonomics 40(6), 631–640(10) (1997). http://www.ingentaconnect.com/content/tandf/terg/1997/00000040/00000006/art00003

    Article  Google Scholar 

  36. Phillips, P., Sarkar, S., Robledo, I., Grother, P., Bowyer, K.: Baseline results for the challenge problem of humanid using gait analysis. Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on pp. 130–135 (20–21 May 2002)

    Google Scholar 

  37. Phillips, P.J., Sarkar, S., Robledo, I., Grother, P., Bowyer, K.W.: The gait identification challenge problem: data sets and baseline algorithm. In: Proceedings of The 16th International Conference on Pattern Recognition, vol. 1, pp. 385–388 (2002)

    Google Scholar 

  38. Plänkers, R., Fua, P.: Articulated soft objects for video-based body modeling. In: Proceedings. Eighth IEEE International Conference on Computer Vision, vol. 1, pp. 394–401 (2001)

    Article  Google Scholar 

  39. Puzicha, J., Buhmann, J., Rubner, Y., Tomasi, C.: Empirical evaluation of dissimilarity measures for color and texture. Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on vol. 2, pp. 1165–1172 (1999)

    Article  Google Scholar 

  40. Sarkar, S., Phillips, P., Liu, Z., Vega, I., Grother, P., Bowyer, K.: The humanid gait challenge problem: data sets, performance, and analysis. Trans. Patt. Anal. Mach. Intell. 27(2), 162–177 (Feb. 2005)

    Article  Google Scholar 

  41. Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans. Patt. Anal. Mach. Intell. 27(2), 162–177 (2005)

    Article  Google Scholar 

  42. Shakhnarovich, G., Lee, L., Darrell, T.: Integrated face and gait recognition from multiple views. In: Computer Vision and Pattern Recognition, Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. 439–446 (2001)

    Google Scholar 

  43. Shutler, J., Nixon, M.S.: Zernike velocity moments for sequence-based description of moving features. Image Vision Comput. 24(4), 343–356 (2006)

    Article  Google Scholar 

  44. Shutler, J.D., Grant, M.G., Nixon, M.S., Carter, J.N.: On a large sequence-based human gait database. In: Proceedings of Fourth International Conference on Recent Advances in Soft Computing, pp. 66–72 (2002)

    Google Scholar 

  45. Slabaugh, G.G., Culbertson, W.B., Malzbender, T., Stevens, M.R., Schafer, R.W.: Methods for volumetric reconstruction of visual scenes. Int. J. Comput. Vision 57(3), 179–199 (2004)

    Article  Google Scholar 

  46. Spencer, N., Carter, J.: Towards pose invariant gait reconstruction. Image Processing, 2005. ICIP 2005. IEEE International Conference on 3, III–261–4 (11–14 Sept. 2005)

    Google Scholar 

  47. Spencer, N.M., Carter, J.N.: Viewpoint invarience in automatic gait recognition. In: Proceedings of Third IEEE Workshop on Automatic Identification Advanced Technologies, AutoID’02, pp. 1–6 (2002)

    Google Scholar 

  48. Urtasun, R., Fua, P.: 3d tracking for gait characterization and recognition. In: Proceedings. Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 17–22 (2004)

    Google Scholar 

  49. Veres, G., Nixon, M., Carter, J.: Is enough enough? what is sufficiency in biometric data? In: International Conference on Image Analysis and Recognition, vol. 4142, pp. 262–273. Springer Lecture Notes (2006). http://eprints.ecs.soton.ac.uk/12832/

    Article  Google Scholar 

  50. Veres, G.V., Gordon, L., Carter, J.N., Nixon, M.S.: What image information is important in silhouette-based gait recognition? In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 776–782 (2004)

    Article  Google Scholar 

  51. Wagg, D.K., Nixon, M.S.: Automated markerless extraction of walking people using deformable contour models. Comput. Animation Virtual Worlds 15(3–4), 399–406 (2004)

    Article  Google Scholar 

  52. Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Patt. Recogn. 36(3), 585–601 (2003)

    Article  Google Scholar 

  53. Wang, L., Tan, T., Hu, W., Ning, H.: Automatic gait recognition based on statistical shape analysis. Image Process., IEEE Trans. 12(9), 1120–1131 (Sept. 2003)

    Article  MathSciNet  Google Scholar 

  54. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Patt. Anal. Mach. Intell. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  55. Wang, Y., Pascoe, D.D., Weimar, W.: Evaluation of book backpack load during walking. Ergonomics 44(9), 858–869 (2001)

    Article  Google Scholar 

  56. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2004)

    Google Scholar 

  57. Yam, C., Nixon, M.S., Carter, J.N.: Extended model-based automatic gait recognition of walking and running. In: Proceedings of 3rd Int. Conf. on Audio- and Video-Based Biometric Person Authentication, AVBPA 2001, pp. 278–283 (2001)

    Google Scholar 

  58. Zhang, R., Vogler, C., Metaxas, D.: Human gait recognition at sagittal plane. Image Vision Comput. 25(3), 321–330 (2007)

    Article  Google Scholar 

  59. Zhang, Z., Troje, N.F.: View-independent person identification from human gait. Neurocomputing 69(1–3), 250–256 (2005)

    Article  Google Scholar 

  60. Zhao, G., Liu, G., Li, H., Pietikäinen, M.: 3d gait recognition using multiple cameras. In: Proceedings of the Seventh IEEE International Conference on Automatic Face and Gesture Recognition (FG ’06), pp. 529–534. IEEE Computer Society, Los Alamitos, CA, USA (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Seely .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Seely, R.D., Goffredo, M., Carter, J.N., Nixon, M.S. (2009). View Invariant Gait Recognition. In: Tistarelli, M., Li, S.Z., Chellappa, R. (eds) Handbook of Remote Biometrics. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-385-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-385-3_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-384-6

  • Online ISBN: 978-1-84882-385-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics