Skip to main content

Laser Additive Manufacturing Processes for Near Net Shape Components

  • Chapter
  • First Online:
Book cover Near Net Shape Manufacturing Processes

Abstract

Laser -based additive manufacturing is a group of manufacturing processes widely used to produce three-dimensional near net shape components. Lasers can provide localized and controllable amounts of energy with the aim to cure a liquid photopolymer , to sinter or melt powders of different nature or even to cut laminates in order to obtain a physical model in the macro- or microscale. This work provides an overview on some major near net-shape manufacturing processes based on laser. Influence of the processing parameters, materials suitable for each one, and main advantages and current limitations of these techniques are reviewed for readers to understand and undertake research to establish the field further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO/ASTM Standards ISO/ASTM 52900 (2015) Additive manufacturing—general principles—terminology

    Google Scholar 

  2. Gupta K, Jain NK, Laubscher R (2017) Advances in gear manufacturing (Chap. 4). In: Advanced gear manufacturing and finishing—classical and modern processes. Academic Press Inc. (an imprint of Elsevier), pp 67–125

    Google Scholar 

  3. Attaran M (2017) The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus Horiz 60:677–688. https://doi.org/10.1016/j.bushor.2017.05.011

    Article  Google Scholar 

  4. Rooks B (2002) Rapid tooling for casting prototypes. Assem Autom 22:40–45. https://doi.org/10.1108/01445150210416664

    Article  Google Scholar 

  5. Potamianos P, Amis AA, Forester AJ, McGurk M, Bircher M (1998) Rapid prototyping for orthopaedic surgery. Proc Inst Mech Eng [H] 212:383–393. https://doi.org/10.1243/0954411981534150

    Article  Google Scholar 

  6. Campbell I, Bourell D, Gibson I (2012) Additive manufacturing: rapid prototyping comes of age. Rapid Prototyp J 18:255–258. https://doi.org/10.1108/13552541211231563

    Article  Google Scholar 

  7. Kruth JP (1991) Material incress manufacturing by rapid prototyping techniques. CIRP Ann 40:603–614. https://doi.org/10.1016/S0007-8506(07)61136-6

    Article  Google Scholar 

  8. Szilvśi-Nagy M, Mátyási G (2003) Analysis of STL files. Math Comput Model 38:945–960. https://doi.org/10.1016/S0895-7177(03)90079-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Hällgren S, Pejryd L, Ekengren J (2016) 3D data export for additive manufacturing—improving geometric accuracy. Procedia CIRP 50:518–523. https://doi.org/10.1016/j.procir.2016.05.046

    Article  Google Scholar 

  10. Wong KV, Hernandez A (2012) A review of additive manufacturing. Int Sch Res Not 2012:10. https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  11. Born M, Wolf E (2013) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 6th edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  12. Pham DT, Gault RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38:1257–1287. https://doi.org/10.1016/S0890-6955(97)00137-5

    Article  Google Scholar 

  13. Sager B, Rosen DW (2008) Use of parameter estimation for stereolithography surface finish improvement. Rapid Prototyp J 14:213–220. https://doi.org/10.1108/13552540810896166

    Article  Google Scholar 

  14. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  Google Scholar 

  15. Dahotre NB, Harimkar S (2008) Laser fabrication and machining of materials. Springer Science & Business Media, New York

    Google Scholar 

  16. Ahn D, Kweon J-H, Choi J, Lee S (2012) Quantification of surface roughness of parts processed by laminated object manufacturing. J Mater Process Technol 212:339–346. https://doi.org/10.1016/j.jmatprotec.2011.08.013

    Article  Google Scholar 

  17. Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. United States Patent: 4575330

    Google Scholar 

  18. Salmoria GV, Ahrens CH, Beal VE, Pires ATN, Soldi V (2009) Evaluation of post-curing and laser manufacturing parameters on the properties of SOMOS 7110 photosensitive resin used in stereolithography. Mater Des 30:758–763. https://doi.org/10.1016/j.matdes.2008.05.016

    Article  Google Scholar 

  19. Partanen JP (1996) Lasers and optics in stereolithography. International Society for Optics and Photonics, San Jose, pp 502–512

    Google Scholar 

  20. Jacobs PF (1992) Rapid prototyping & manufacturing: fundamentals of stereolithography, 1st edn. Society of Manufacturing Engineers, Dearborn

    Google Scholar 

  21. Renap K, Kruth JP (1995) Recoating issues in stereolithography. Rapid Prototyp J 1:4–16. https://doi.org/10.1108/13552549510094223

    Article  Google Scholar 

  22. Salmoria GV, Gonzalez VJ, Ahrens CH, Soldi V, Pires ATN (2005) Stereolithography Somos 7110 photosensitive resin: study of curing kinetic and thermal degradation. J Mater Process Technol 168:164–171. https://doi.org/10.1016/j.jmatprotec.2004.11.012

    Article  Google Scholar 

  23. Salmoria GV, Ahrens CH, Fredel M, Soldi V, Pires ATN (2005) Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods. Polym Test 24:157–162. https://doi.org/10.1016/j.polymertesting.2004.09.008

    Article  Google Scholar 

  24. Fuh JYH, Choo YS, Lu L, Nee AYC, Wong YS, Wang WL, Miyazawa T, Ho SH (1997) Post-cure shrinkage of photo-sensitive material used in laser lithography process. J Mater Process Technol 63:887–891. https://doi.org/10.1016/S0924-0136(96)02744-6

    Article  Google Scholar 

  25. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050

    Article  Google Scholar 

  26. Decker C (1999) High-speed curing by laser irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 151:22–28. https://doi.org/10.1016/S0168-583X(99)00077-4

    Article  Google Scholar 

  27. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Article  Google Scholar 

  28. Bártolo PJ (2011) Stereolithography: materials, processes and applications, 1st edn. Springer, US

    Book  Google Scholar 

  29. Chen M, Zhong M, Johnson JA (2016) Light-controlled radical polymerization: mechanisms, methods, and applications. Chem Rev 116:10167–10211. https://doi.org/10.1021/acs.chemrev.5b00671

    Article  Google Scholar 

  30. Zhang Y, Jariwala A, Rosen DW (2015) Effects of oxygen inhibition and post-processing on exposure controlled projection lithography process accuracy. The University of Texas, Austin, pp 346–359

    Google Scholar 

  31. Eschl J, Blumenstock T, Eyerer P (1999) Comparison of the curing process of epoxy and acrylate resins for stereolithography by means of experimental investigations and FEM-simulation. The University of Texas, Austin, pp 453–460

    Google Scholar 

  32. Decker C, Moussa K (1990) Kinetic study of the cationic photopolymerization of epoxy monomers. J Polym Sci Part Polym Chem 28:3429–3443. https://doi.org/10.1002/pola.1990.080281220

    Article  Google Scholar 

  33. Esposito Corcione C, Greco A, Maffezzoli A (2004) Photopolymerization kinetics of an epoxy-based resin for stereolithography. J Appl Polym Sci 92:3484–3491. https://doi.org/10.1002/app.20347

    Article  Google Scholar 

  34. Melchels FPW, Feijen J, Grijpma DW (2009) A poly(d, l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30:3801–3809. https://doi.org/10.1016/j.biomaterials.2009.03.055

    Article  Google Scholar 

  35. Schüller-Ravoo S, Feijen J, Grijpma DW (2011) Preparation of flexible and elastic poly(trimethylene carbonate) structures by stereolithography. Macromol Biosci 11:1662–1671. https://doi.org/10.1002/mabi.201100203

    Article  Google Scholar 

  36. Hoang Sinh L, Harri K, Marjo L, Minna M, Dang Luong N, Jürgen W, Torsten W, Matthias S, Jukka S (2016) Novel photo-curable polyurethane resin for stereolithography. RSC Adv 6:50706–50709. https://doi.org/10.1039/C6RA05045J

    Article  Google Scholar 

  37. Griffith ML, Halloran JW (1996) Freeform fabrication of ceramics via stereolithography. J Am Ceram Soc 79:2601–2608. https://doi.org/10.1111/j.1151-2916.1996.tb09022.x

    Article  Google Scholar 

  38. Halloran JW (2016) Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res 46:19–40. https://doi.org/10.1146/annurev-matsci-070115-031841

    Article  Google Scholar 

  39. Brady GA, Halloran JW (1997) Stereolithography of ceramic suspensions. Rapid Prototyp J 3:61–65. https://doi.org/10.1108/13552549710176680

    Article  Google Scholar 

  40. Hinczewski C, Corbel S, Chartier T (1998) Ceramic suspensions suitable for stereolithography. J Eur Ceram Soc 18:583–590. https://doi.org/10.1016/S0955-2219(97)00186-6

    Article  Google Scholar 

  41. Greco A, Licciulli A, Maffezzoli A (2001) Stereolitography of ceramic suspensions. J Mater Sci 36:99–105. https://doi.org/10.1023/A:1004899027360

    Article  Google Scholar 

  42. Sakly A, Kenzari S, Bonina D, Corbel S, Fournée V (2014) A novel quasicrystal-resin composite for stereolithography. Mater Des 1980–2015(56):280–285. https://doi.org/10.1016/j.matdes.2013.11.025

    Article  Google Scholar 

  43. Partanen JP (1996) Solid state lasers for stereolithography. The University of Texas, Austin, pp 369–376

    Google Scholar 

  44. Fuh JYH, Choo YS, Nee AYC, Lu L, Lee KC (1995) Improvement of the UV curing process for the laser lithography technique. Mater Des 16:23–32. https://doi.org/10.1016/0261-3069(95)00007-L

    Article  Google Scholar 

  45. Lee JH, Prud’homme RK, homme, Aksay IA (2001) Cure depth in photopolymerization: experiments and theory. J Mater Res 16:3536–3544. https://doi.org/10.1557/jmr.2001.0485

    Article  Google Scholar 

  46. Tomeckova V, Halloran JW (2010) Cure depth for photopolymerization of ceramic suspensions. J Eur Ceram Soc 30:3023–3033. https://doi.org/10.1016/j.jeurceramsoc.2010.06.004

    Article  Google Scholar 

  47. Shellabear M, Nyrhilä O (2004) DMLS-development history and state of the art. In: Proceedings of the 4th LANE conference. Erlangen, Germany

    Google Scholar 

  48. Singh S, Sharma VS, Sachdeva A (2016) Progress in selective laser sintering using metallic powders: a review. Mater Sci Technol 32:760–772. https://doi.org/10.1179/1743284715Y.0000000136

    Article  Google Scholar 

  49. Yang H-J, Hwang P-J, Lee S-H (2002) A study on shrinkage compensation of the SLS process by using the Taguchi method. Int J Mach Tools Manuf 42:1203–1212. https://doi.org/10.1016/S0890-6955(02)00070-6

    Article  Google Scholar 

  50. Das S (2003) Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater 5:701–711. https://doi.org/10.1002/adem.200310099

    Article  Google Scholar 

  51. Lü L, Fuh JYH, Wong YS (2001) Laser-induced materials and processes for rapid prototyping. Springer Science + Business Media, New York

    Chapter  Google Scholar 

  52. Venuvinod PK (2013) Rapid prototyping—laser-based and other technologies. Springer, Berlin

    Google Scholar 

  53. Vandenbroucke B, Kruth J-P (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13:196–203. https://doi.org/10.1108/13552540710776142

    Article  Google Scholar 

  54. Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J (1995) Post-processing of selective laser sintered metal parts. Rapid Prototyp J 1:36–44. https://doi.org/10.1108/13552549510086853

    Article  Google Scholar 

  55. Jhabvala J, Boillat E, Glardon R (2013) Study of the inter-particle necks in selective laser sintering. Rapid Prototyp J 19:111–117. https://doi.org/10.1108/13552541311302969

    Article  Google Scholar 

  56. Savalani MM, Hao L, Dickens PM, Zhang Y, Tanner KE, Harris RA (2012) The effects and interactions of fabrication parameters on the properties of selective laser sintered hydroxyapatite polyamide composite biomaterials. Rapid Prototyp J 18:16–27. https://doi.org/10.1108/13552541211193467

    Article  Google Scholar 

  57. Fischer P, Karapatis N, Romano V, Glardon R, Weber HP (2002) A model for the interaction of near-infrared laser pulses with metal powders in selective laser sintering. Appl Phys A 74:467–474. https://doi.org/10.1007/s003390101139

    Article  Google Scholar 

  58. Subramanian K, Vail N, Barlow J, Marcus H (1995) Selective laser sintering of alumina with polymer binders. Rapid Prototyp J 1:24–35. https://doi.org/10.1108/13552549510086844

    Article  Google Scholar 

  59. Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J (1995) Direct selective laser sintering of metals. Rapid Prototyp J 1:26–36. https://doi.org/10.1108/13552549510078113

    Article  Google Scholar 

  60. Senthilkumaran K, Pandey PM, Rao PVM (2009) Influence of building strategies on the accuracy of parts in selective laser sintering. Mater Des 30:2946–2954. https://doi.org/10.1016/j.matdes.2009.01.009

    Article  Google Scholar 

  61. Li R, Liu J, Shi Y, Wang L, Jiang W, Li R, Liu J, Shi Y, Wang L (2012) Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol 59:1025–1035. https://doi.org/10.1007/s00170-011-3566-1

    Article  Google Scholar 

  62. Raghunath N, Pandey PM (2007) Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering. Int J Mach Tools Manuf 47:985–995. https://doi.org/10.1016/j.ijmachtools.2006.07.001

    Article  Google Scholar 

  63. Mumtaz K, Hopkinson N (2010) Selective laser melting of Inconel 625 using pulse shaping. Rapid Prototyp J 16:248–257. https://doi.org/10.1108/13552541011049261

    Article  Google Scholar 

  64. Tolochko NK, Khlopkov YV, Mozzharov SE, Ignatiev MB, Laoui T, Titov VI (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J 6:155–161. https://doi.org/10.1108/13552540010337029

    Article  Google Scholar 

  65. Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2:041101. https://doi.org/10.1063/1.4935926

    Article  Google Scholar 

  66. Wang D, Yu C, Zhou X, Ma J, Liu W, Shen Z (2017) Dense pure tungsten fabricated by selective laser melting. Appl Sci 7:430. https://doi.org/10.3390/app7040430

    Article  Google Scholar 

  67. Oyar P (2017) Laser sintering technology and balling phenomenon. Photomed Laser Surg. https://doi.org/10.1089/pho.2017.4311

    Article  Google Scholar 

  68. Kruth JP, Wang X, Laoui T, Froyen L (2003) Lasers and materials in selective laser sintering. Assem Autom 23:357–371. https://doi.org/10.1108/01445150310698652

    Article  Google Scholar 

  69. Rietzel D, Aquite W, Drummer D, Osswald TA (2011) Polymer powders for selective laser sintering (SLS). In: 44th conference on manufacturing systems, Madison, WI

    Google Scholar 

  70. Goodridge RD, Tuck CJ, Hague RJM (2012) Laser sintering of polyamides and other polymers. Prog Mater Sci 57:229–267. https://doi.org/10.1016/j.pmatsci.2011.04.001

    Article  Google Scholar 

  71. Schmid M, Amado A, Wegener K (2015) Polymer powders for selective laser sintering (SLS). AIP Conf Proc 1664:160009. https://doi.org/10.1063/1.4918516

    Article  Google Scholar 

  72. Berretta S, Evans KE, Ghita O (2015) Processability of PEEK, a new polymer for high temperature laser sintering (HT-LS). Eur Polym J 68:243–266. https://doi.org/10.1016/j.eurpolymj.2015.04.003

    Article  Google Scholar 

  73. Schmidt M, Pohle D, Rechtenwald T (2007) Selective laser sintering of PEEK. CIRP Ann 56:205–208. https://doi.org/10.1016/j.cirp.2007.05.097

    Article  Google Scholar 

  74. Plummer K, Vasquez M, Majewski C, Hopkinson N (2012) Study into the recyclability of a thermoplastic polyurethane powder for use in laser sintering. Proc Inst Mech Eng Part B J Eng Manuf 226:1127–1135. https://doi.org/10.1177/0954405412440066

    Article  Google Scholar 

  75. Shi Y, Wang Y, Chen J, Huang S (2008) Experimental investigation into the selective laser sintering of high-impact polystyrene. J Appl Polym Sci 108:535–540. https://doi.org/10.1002/app.27686

    Article  Google Scholar 

  76. Strobbe D, Dadbakhsh S, Verbelen L, Puyvelde PV, Kruth JP (2017) Selective laser sintering of polystyrene: a single-layer approach. Plast Rubber Compos 0:1–7. https://doi.org/10.1080/14658011.2017.1399532

    Article  Google Scholar 

  77. Goodridge RD, Shofner ML, Hague RJM, McClelland M, Schlea MR, Johnson RB, Tuck CJ (2011) Processing of a polyamide-12/carbon nanofibre composite by laser sintering. Polym Test 30:94–100. https://doi.org/10.1016/j.polymertesting.2010.10.011

    Article  Google Scholar 

  78. Salmoria GV, Paggi RA, Lago A, Beal VE (2011) Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym Test 30:611–615. https://doi.org/10.1016/j.polymertesting.2011.04.007

    Article  Google Scholar 

  79. King D, Tansey T (2003) Rapid tooling: selective laser sintering injection tooling. J Mater Process Technol 132:42–48. https://doi.org/10.1016/S0924-0136(02)00257-1

    Article  Google Scholar 

  80. Qian B, Shen Z (2013) Laser sintering of ceramics. J Asian Ceram Soc 1:315–321. https://doi.org/10.1016/j.jascer.2013.08.004

    Article  Google Scholar 

  81. Yves-Christian H, Jan W, Wilhelm M, Konrad W, Reinhart P (2010) Net shaped high performance oxide ceramic parts by selective laser melting. Phys Procedia 5:587–594. https://doi.org/10.1016/j.phpro.2010.08.086

    Article  Google Scholar 

  82. Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I (2007) Ceramic components manufacturing by selective laser sintering. Appl Surf Sci 254:989–992. https://doi.org/10.1016/j.apsusc.2007.08.085

    Article  Google Scholar 

  83. Gahler A, Heinrich JG, Günster J (2006) Direct laser sintering of Al2O3–SiO2 dental ceramic components by layer-wise slurry deposition. J Am Ceram Soc 89:3076–3080. https://doi.org/10.1111/j.1551-2916.2006.01217.x

    Article  Google Scholar 

  84. Tang H-H, Chiu M-L, Yen H-C (2011) Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J Eur Ceram Soc 31:1383–1388. https://doi.org/10.1016/j.jeurceramsoc.2011.02.020

    Article  Google Scholar 

  85. Shahzad K, Deckers J, Zhang Z, Kruth J-P, Vleugels J (2014) Additive manufacturing of zirconia parts by indirect selective laser sintering. J Eur Ceram Soc 34:81–89. https://doi.org/10.1016/j.jeurceramsoc.2013.07.023

    Article  Google Scholar 

  86. Childs THC, Hauser C, Badrossamay M (2004) Mapping and modelling single scan track formation in direct metal selective laser melting. CIRP Ann 53:191–194. https://doi.org/10.1016/S0007-8506(07)60676-3

    Article  Google Scholar 

  87. Fischer P, Romano V, Blatter A, Weber HP (2005) Highly precise pulsed selective laser sintering of metallic powders. Laser Phys Lett 2:48–55. https://doi.org/10.1002/lapl.200410118

    Article  Google Scholar 

  88. Kaiser T, Albrecht GJ (2007) Industrial disk lasers for micro material processing—compact reliable systems conquer the market. Laser Tech J 4:54–57. https://doi.org/10.1002/latj.200790167

    Article  Google Scholar 

  89. Schleifenbaum H, Meiners W, Wissenbach K, Hinke C (2010) Individualized production by means of high power selective laser melting. CIRP J Manuf Sci Technol 2:161–169. https://doi.org/10.1016/j.cirpj.2010.03.005

    Article  Google Scholar 

  90. Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149:616–622. https://doi.org/10.1016/j.jmatprotec.2003.11.051

    Article  Google Scholar 

  91. Badrossamay M, Childs THC (2007) Further studies in selective laser melting of stainless and tool steel powders. Int J Mach Tools Manuf 47:779–784. https://doi.org/10.1016/j.ijmachtools.2006.09.013

    Article  Google Scholar 

  92. Jerrard PGE, Hao L, Evans KE (2009) Experimental investigation into selective laser melting of austenitic and martensitic stainless steel powder mixtures. Proc Inst Mech Eng Part B J Eng Manuf 223:1409–1416. https://doi.org/10.1243/09544054JEM1574

    Article  Google Scholar 

  93. Tolosa I, Garciandía F, Zubiri F, Zapirain F, Esnaola A (2010) Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int J Adv Manuf Technol 51:639–647. https://doi.org/10.1007/s00170-010-2631-5

    Article  Google Scholar 

  94. Manakari V, Parande G, Gupta M (2016) Selective laser melting of magnesium and magnesium alloy powders: a review. Metals 7:2. https://doi.org/10.3390/met7010002

    Article  Google Scholar 

  95. Clare AT, Chalker PR, Davies S, Sutcliffe CJ, Tsopanos S (2008) Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int J Mech Mater Des 4:181–187. https://doi.org/10.1007/s10999-007-9032-4

    Article  Google Scholar 

  96. Sing SL, Yeong WY, Wiria FE (2016) Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. J Alloys Compd 660:461–470. https://doi.org/10.1016/j.jallcom.2015.11.141

    Article  Google Scholar 

  97. Zhang L-C, Attar H (2016) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater 18:463–475. https://doi.org/10.1002/adem.201500419

    Article  Google Scholar 

  98. Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211:275–284. https://doi.org/10.1016/j.jmatprotec.2010.09.019

    Article  Google Scholar 

  99. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477. https://doi.org/10.1016/j.pmatsci.2015.03.002

    Article  Google Scholar 

  100. Lykov PA, Safonov EV, Akhmedianov AM (2016) Selective laser melting of copper. Mater Sci Forum 843:284–288. https://doi.org/10.4028/www.scientific.net/MSF.843.284

    Article  Google Scholar 

  101. Ferrar B, Mullen L, Jones E, Stamp R, Sutcliffe CJ (2012) Gas flow effects on selective laser melting (SLM) manufacturing performance. J Mater Process Technol 212:355–364. https://doi.org/10.1016/j.jmatprotec.2011.09.020

    Article  Google Scholar 

  102. Liu B, Bai P, Li Y (2011) Post treatment process and selective laser sintering mechanism of polymer-coated mo powder. Open Mater Sci J 5

    Article  Google Scholar 

  103. Vilar R (1999) Laser cladding. J Laser Appl 11:64–79. https://doi.org/10.2351/1.521888

    Article  Google Scholar 

  104. Comesaña R, Quintero F, Lusquiños F, Pascual MJ, Boutinguiza M, Durán A, Pou J (2010) Laser cladding of bioactive glass coatings. Acta Biomater 6:953–961. https://doi.org/10.1016/j.actbio.2009.08.010

    Article  Google Scholar 

  105. Wang Q-Y, Zhang Y-F, Bai S-L, Liu Z-D (2013) Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding. J Alloys Compd 553:253–258. https://doi.org/10.1016/j.jallcom.2012.10.193

    Article  Google Scholar 

  106. Xu P, Lin C, Zhou C, Yi X (2014) Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings. Surf Coat Technol 238:9–14. https://doi.org/10.1016/j.surfcoat.2013.10.028

    Article  Google Scholar 

  107. Sexton CL, Byrne G, Watkins KG (2001) Alloy development by laser cladding: an overview. J Laser Appl 13:2–11. https://doi.org/10.2351/1.1340337

    Article  Google Scholar 

  108. Shepeleva L, Medres B, Kaplan WD, Bamberger M, Weisheit A (2000) Laser cladding of turbine blades. Surf Coat Technol 125:45–48. https://doi.org/10.1016/S0257-8972(99)00603-9

    Article  Google Scholar 

  109. Sexton L, Lavin S, Byrne G, Kennedy A (2002) Laser cladding of aerospace materials. J Mater Process Technol 122:63–68. https://doi.org/10.1016/S0924-0136(01)01121-9

    Article  Google Scholar 

  110. Brandt M, Sun S, Alam N, Bendeich P, Bishop A (2009) Laser cladding repair of turbine blades in power plants: from research to commercialisation. Int Heat Treat Surf Eng 3:105–114. https://doi.org/10.1179/174951409X12542264513843

    Article  Google Scholar 

  111. Steen WM, Mazumder J (2010) Laser material processing, 4th edn. Springer Science & Business Media, London

    Book  Google Scholar 

  112. Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) The direct metal deposition of H13 tool steel for 3-D components. JOM 49:55–60. https://doi.org/10.1007/BF02914687

    Article  Google Scholar 

  113. Keicher D, Miller WD (1998) LENS moves beyond RP to direct fabrication. Met Powder Rep 53:26–28. https://doi.org/10.1016/S0026-0657(99)80073-3

    Article  Google Scholar 

  114. Xue L, Islam MU (2000) Free-form laser consolidation for producing metallurgically sound and functional components. J Laser Appl 12:160–165. https://doi.org/10.2351/1.521927

    Article  Google Scholar 

  115. Pei YT, De Hosson JTM (2000) Functionally graded materials produced by laser cladding. Acta Mater 48:2617–2624. https://doi.org/10.1016/S1359-6454(00)00065-3

    Article  Google Scholar 

  116. Banerjee R, Collins PC, Genç A, Fraser HL (2003) Direct laser deposition of in situ Ti–6Al–4 V–TiB composites. Mater Sci Eng A 358:343–349. https://doi.org/10.1016/S0921-5093(03)00299-5

    Article  Google Scholar 

  117. del Val J, Arias-González F, Barro O, Riveiro A, Comesaña R, Penide J, Lusquiños F, Bountinguiza M, Quintero F, Pou J (2017) Functionally graded 3D structures produced by laser cladding. Procedia Manuf 13:169–176. https://doi.org/10.1016/j.promfg.2017.09.029

    Article  Google Scholar 

  118. Kannatey-Asibu E Jr (2009) Principles of laser materials processing. Wiley, Hoboken

    Book  Google Scholar 

  119. Ready JF, Farson DF, Feeley T (2001) LIA handbook of laser materials processing, 1st edn. Springer, Berlin

    Google Scholar 

  120. Mazumder J, Dutta D, Kikuchi N, Ghosh A (2000) Closed loop direct metal deposition: art to part. Opt Lasers Eng 34:397–414. https://doi.org/10.1016/S0143-8166(00)00072-5

    Article  Google Scholar 

  121. Kumar S, Sharma V, Choudhary AKS, Chattopadhyaya S, Hloch S, Chattopadhyaya S, Kumar S, Choudhary AKS, Sharma V (2013) Determination of layer thickness in direct metal deposition using dimensional analysis. Int J Adv Manuf Technol 67:2681–2687. https://doi.org/10.1007/s00170-012-4683-1

    Article  Google Scholar 

  122. Candel-Ruiz A, Kaufmann S, Müllerschön O (2015) Strategies for high deposition rate additive manufacturing by laser metal deposition. In: Proceedings of lasers in manufacturing (LiM) 2015. Wissenschaftliche Gesellschaft Lasertechnik (WLT) e.V., Munich

    Google Scholar 

  123. Gorsse S, Hutchinson C, Gouné M, Banerjee R (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti–6Al–4V and high-entropy alloys. Sci Technol Adv Mater 18:584–610. https://doi.org/10.1080/14686996.2017.1361305

    Article  Google Scholar 

  124. Rombouts M, Maes G, Hendrix W, Delarbre E, Motmans F (2013) Surface finish after laser metal deposition. Phys Procedia 41:810–814. https://doi.org/10.1016/j.phpro.2013.03.152

    Article  Google Scholar 

  125. Dadbakhsh S, Hao L, Kong CY (2010) Surface finish improvement of LMD samples using laser polishing. Virtual Phys Prototyp 5:215–221. https://doi.org/10.1080/17452759.2010.528180

    Article  Google Scholar 

  126. Yasa E, Deckers J, Kruth J-P (2011) The investigation of the influence of laser remelting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17:312–327. https://doi.org/10.1108/13552541111156450

    Article  Google Scholar 

  127. Boley CD, Khairallah SA, Rubenchik AM (2015) Calculation of laser absorption by metal powders in additive manufacturing. Appl Opt 54:2477–2482. https://doi.org/10.1364/AO.54.002477

    Article  Google Scholar 

  128. Gedda H (2004) Laser cladding : an experimental and theoretical investigation. Doctoral thesis, Luleå University of Technology

    Google Scholar 

  129. Barnes S, Timms N, Bryden B, Pashby I (2003) High power diode laser cladding. J Mater Process Technol 138:411–416. https://doi.org/10.1016/S0924-0136(03)00109-2

    Article  Google Scholar 

  130. Zhong C, Biermann T, Gasser A, Poprawe R (2015) Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate laser metal deposition. J Laser Appl 27:042003. https://doi.org/10.2351/1.4923335

    Article  Google Scholar 

  131. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of laser power density on microstructure, microhardness, and surface finish of laser deposited titanium alloy. J Manuf Sci Eng 135:064502–064502-4. https://doi.org/10.1115/1.4025737

    Article  Google Scholar 

  132. Gharbi M, Peyre P, Gorny C, Carin M, Morville S, Le Masson P, Carron D, Fabbro R (2014) Influence of a pulsed laser regime on surface finish induced by the direct metal deposition process on a Ti64 alloy. J Mater Process Technol 214:485–495. https://doi.org/10.1016/j.jmatprotec.2013.10.004

    Article  Google Scholar 

  133. Thoma DJ, Charbon C, Lewis GK, Nemec RB (1995) Directed light fabrication of iron-based materials. MRS Proc 397:341–346. https://doi.org/10.1557/PROC-397-341

    Article  Google Scholar 

  134. Frenk A, Vandyoussefi M, Wagnière J-D, Kurz W, Zryd A, Frenk A, Vandyoussefi M, Wagnière J-D, Kurz W (1997) Analysis of the laser-cladding process for stellite on steel. Metall Mater Trans B 28:501–508. https://doi.org/10.1007/s11663-997-0117-0

    Article  Google Scholar 

  135. Ahsan MN, Paul CP, Kukreja LM, Pinkerton AJ (2011) Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation. J Mater Process Technol 211:602–609. https://doi.org/10.1016/j.jmatprotec.2010.11.014

    Article  Google Scholar 

  136. Weerasinghe VM, Steen WM (1987) Laser cladding with pneumatic powder delivery. In: Nijhoff Martinus (ed) Applied laser tooling, 1st edn. Publishers, Dordrecht, pp 183–211

    Chapter  Google Scholar 

  137. Geldart D (1973) Types of gas fluidization. Powder Technol 7:285–292. https://doi.org/10.1016/0032-5910(73)80037-3

    Article  Google Scholar 

  138. Molerus O (1982) Interpretation of Geldart’s type A, B, C and D powders by taking into account interparticle cohesion forces. Powder Technol 33:81–87. https://doi.org/10.1016/0032-5910(82)85041-9

    Article  Google Scholar 

  139. Boisselier D, Sankaré S (2012) Influence of powder characteristics in laser direct metal deposition of SS316L for metallic parts manufacturing. Phys Procedia 39:455–463. https://doi.org/10.1016/j.phpro.2012.10.061

    Article  Google Scholar 

  140. Brandt M (2017) The role of lasers in additive manufacturing. In: Laser additive manufacturing. Woodhead Publishing, pp 1–18

    Google Scholar 

  141. Laeng J, Stewart JG, Liou FW (2000) Laser metal forming processes for rapid prototyping—a review. Int J Prod Res 38:3973–3996. https://doi.org/10.1080/00207540050176111

    Article  MATH  Google Scholar 

  142. Keicher DM, Smugeresky JE, Smugeresky JE (1997) The laser forming of metallic components using particulate materials. JOM 49:51–54. https://doi.org/10.1007/BF02914686

    Article  Google Scholar 

  143. Liu J, Li L, Zhang Y, Xie X (2005) Attenuation of laser power of a focused Gaussian beam during interaction between a laser and powder in coaxial laser cladding. J Phys Appl Phys 38:1546. https://doi.org/10.1088/0022-3727/38/10/008

    Article  Google Scholar 

  144. Tabernero I, Lamikiz A, Martínez S, Ukar E, López de Lacalle LN (2012) Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process. J Mater Process Technol 212:516–522. https://doi.org/10.1016/j.jmatprotec.2011.10.019

    Article  Google Scholar 

  145. Lin J (2000) Laser attenuation of the focused powder streams in coaxial laser cladding. J Laser Appl 12:28–33. https://doi.org/10.2351/1.521910

    Article  Google Scholar 

  146. Lin J, Steen WM, Steen WM (1997) Powder flow and catchment during coaxial laser cladding. International Society for Optics and Photonics, pp 517–529

    Google Scholar 

  147. Lin J, Steen WM (1998) An in-process method for the inverse estimation of the powder catchment efficiency during laser cladding. Opt Laser Technol 30:77–84. https://doi.org/10.1016/S0030-3992(98)00007-3

    Article  Google Scholar 

  148. Jendrzejewski R, Kreja I, Śliwiński G (2004) Temperature distribution in laser-clad multi-layers. Mater Sci Eng A 379:313–320. https://doi.org/10.1016/j.msea.2004.02.053

    Article  Google Scholar 

  149. Pinkerton AJ, Li L (2004) An analytical model of energy distribution in laser direct metal deposition. Proc Inst Mech Eng Part B J Eng Manuf 218:363–374. https://doi.org/10.1243/095440504323055498

    Article  Google Scholar 

  150. Ng GKL, Jarfors AEW, Bi G, Zheng HY, Ng GKL, Bi G, Jarfors AEW (2009) Porosity formation and gas bubble retention in laser metal deposition. Appl Phys A 97:641. https://doi.org/10.1007/s00339-009-5266-3

    Article  Google Scholar 

  151. Lee YS, Farson DF, Farson DF (2016) Surface tension-powered build dimension control in laser additive manufacturing process. Int J Adv Manuf Technol 85:1035–1044. https://doi.org/10.1007/s00170-015-7974-5

    Article  Google Scholar 

  152. Hoadley AFA, Rappaz M (1992) A thermal model of laser cladding by powder injection. Metall Trans B 23:631–642. https://doi.org/10.1007/BF02649723

    Article  Google Scholar 

  153. Fathi A, Toyserkani E, Khajepour A, Durali M (2006) Prediction of melt pool depth and dilution in laser powder deposition. J Phys Appl Phys 39:2613. https://doi.org/10.1088/0022-3727/39/12/022

    Article  Google Scholar 

  154. Arrizubieta JI, Martínez S, Lamikiz A, Ukar E, Arntz K, Klocke F (2017) Instantaneous powder flux regulation system for laser metal deposition. J Manuf Process 29:242–251. https://doi.org/10.1016/j.jmapro.2017.07.018

    Article  Google Scholar 

  155. Wu X, Liang J, Mei J, Mitchell C, Goodwin PS, Voice W (2004) Microstructures of laser-deposited Ti–6Al–4V. Mater Des 25:137–144. https://doi.org/10.1016/j.matdes.2003.09.009

    Article  Google Scholar 

  156. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite. Mater Des 50:656–666. https://doi.org/10.1016/j.matdes.2013.03.049

    Article  Google Scholar 

  157. Zhang K, Wang S, Liu W, Long R (2014) Effects of substrate preheating on the thin-wall part built by laser metal deposition shaping. Appl Surf Sci 317:839–855. https://doi.org/10.1016/j.apsusc.2014.08.113

    Article  Google Scholar 

  158. Shim D-S, Baek G-Y, Lee E-M (2017) Effect of substrate preheating by induction heater on direct energy deposition of AISI M4 powder. Mater Sci Eng A 682:550–562. https://doi.org/10.1016/j.msea.2016.11.029

    Article  Google Scholar 

  159. Choi J, Chang Y (2005) Characteristics of laser aided direct metal/material deposition process for tool steel. Int J Mach Tools Manuf 45:597–607. https://doi.org/10.1016/j.ijmachtools.2004.08.014

    Article  Google Scholar 

  160. Caiazzo F, Alfieri V, Argenio P, Sergi V (2017) Additive manufacturing by means of laser-aided directed metal deposition of 2024 aluminium powder: Investigation and optimization. Adv Mech Eng 9:1687814017714982. https://doi.org/10.1177/1687814017714982

    Article  Google Scholar 

  161. Riveiro A, Mejías A, Lusquiños F, del Val J, Comesaña R, Pardo J, Pou J (2014) Laser cladding of aluminium on AISI 304 stainless steel with high-power diode lasers. Surf Coat Technol 253:214–220. https://doi.org/10.1016/j.surfcoat.2014.05.039

    Article  Google Scholar 

  162. del Val J, Comesaña R, Lusquiños F, Boutinguiza M, Riveiro A, Quintero F, Pou J (2010) Laser cladding of Co-based superalloy coatings: comparative study between Nd:YAG laser and fibre laser. Surf Coat Technol 204:1957–1961. https://doi.org/10.1016/j.surfcoat.2009.11.036

    Article  Google Scholar 

  163. Wang Z, Zhao J, Zhao Y, Zhang H, Shi F (2017) Microstructure and microhardness of laser metal deposition shaping K465/Stellite-6 laminated material. Metals 7:512. https://doi.org/10.3390/met7110512

    Article  Google Scholar 

  164. Mazumder J, Schifferer A, Choi J (1999) Direct materials deposition: designed macro and microstructure. Mater Res Innov 3:118–131. https://doi.org/10.1007/s100190050137

    Article  Google Scholar 

  165. Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser assisted direct metal deposition. Mater Des 21:417–423. https://doi.org/10.1016/S0261-3069(99)00078-3

    Article  Google Scholar 

  166. Clark D, Bache MR, Whittaker MT (2008) Shaped metal deposition of a nickel alloy for aero engine applications. J Mater Process Technol 203:439–448. https://doi.org/10.1016/j.jmatprotec.2007.10.051

    Article  Google Scholar 

  167. Arias-González F, del Val J, Comesaña R, Penide J, Lusquiños F, Quintero F, Riveiro A, Boutinguiza M, Pou J (2016) Fiber laser cladding of nickel-based alloy on cast iron. Appl Surf Sci 374:197–205. https://doi.org/10.1016/j.apsusc.2015.11.023

    Article  Google Scholar 

  168. Bhattacharya S, Dinda GP, Dasgupta AK, Natu H, Dutta B, Mazumder J (2011) Microstructural evolution and mechanical, and corrosion property evaluation of Cu–30Ni alloy formed by direct metal deposition process. J Alloys Compd 509:6364–6373. https://doi.org/10.1016/j.jallcom.2011.03.091

    Article  Google Scholar 

  169. Arias-González F, del Val J, Comesaña R, Penide J, Lusquiños F, Quintero F, Riveiro A, Boutinguiza M, Pou J (2017) Laser cladding of phosphor bronze. Surf Coat Technol 313:248–254. https://doi.org/10.1016/j.surfcoat.2017.01.097

    Article  Google Scholar 

  170. Dinda GP, Song L, Mazumder J (2008) Fabrication of Ti-6Al-4V scaffolds by direct metal deposition. Metall Mater Trans A 39:2914–2922. https://doi.org/10.1007/s11661-008-9634-y

    Article  Google Scholar 

  171. Angelastro A, Campanelli SL, Casalino G, Ludovico AD (2013) Optimization of Ni-based WC/Co/Cr composite coatings produced by multilayer laser cladding. Adv Mater Sci Eng 2013:615464. https://doi.org/10.1155/2013/615464

    Article  Google Scholar 

  172. Hong C, Gu D, Dai D, Gasser A, Weisheit A, Kelbassa I, Zhong M, Poprawe R (2013) Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol 54:98–109. https://doi.org/10.1016/j.optlastec.2013.05.011

    Article  Google Scholar 

  173. Angelastro A, Campanelli SL (2017) Direct laser metal deposition of WC/Co/Cr powder by means of the functionally graded materials strategy. Surf Topogr Metrol Prop 5:044002. https://doi.org/10.1088/2051-672X/aa8021

    Article  Google Scholar 

  174. Comesaña R, Lusquiños F, del Val J, López-Álvarez M, Quintero F, Riveiro A, Boutinguiza M, de Carlos A, Jones JR, Hill RG, Pou J (2011) Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO2 laser cladding. Acta Biomater 7:3476–3487. https://doi.org/10.1016/j.actbio.2011.05.023

    Article  Google Scholar 

  175. Costa L, Vilar R (2009) Laser powder deposition. Rapid Prototyp J 15:264–279. https://doi.org/10.1108/13552540910979785

    Article  Google Scholar 

  176. Hofmeister W, Griffith M, Griffith M (2001) Solidification in direct metal deposition by LENS processing. JOM 53:30–34. https://doi.org/10.1007/s11837-001-0066-z

    Article  Google Scholar 

  177. Klosterman D, Chartoff R, Osborne N, Graves G (1997) Laminated object manufacturing, a new process for the direct manufacture of monolithic ceramics and continuous fiber CMCs. In: Singh JP (ed) Proceedings of the 21st annual conference on composites, advanced ceramics, materials, and structures—B: ceramic engineering and science proceedings. Wiley, New York, pp 112–120

    Google Scholar 

  178. Sonmez FO, Hahn HT (1998) Thermomechanical analysis of the laminated object manufacturing (LOM) process. Rapid Prototyp J 4:26–36. https://doi.org/10.1108/13552549810197541

    Article  Google Scholar 

  179. Park J, Tari MJ, Hahn HT (2000) Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyp J 6:36–50. https://doi.org/10.1108/13552540010309868

    Article  Google Scholar 

  180. Mueller B, Kochan D (1999) Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Comput Ind 39:47–53. https://doi.org/10.1016/S0166-3615(98)00127-4

    Article  Google Scholar 

  181. Kechagias J, Maropoulos S, Karagiannis S (2004) Process build-time estimator algorithm for laminated object manufacturing. Rapid Prototyp J 10:297–304. https://doi.org/10.1108/13552540410562331

    Article  Google Scholar 

  182. Paul BK, Voorakarnam V (2001) Effect of layer thickness and orientation angle on surface roughness in laminated object manufacturing. J Manuf Process 3:94–101. https://doi.org/10.1016/S1526-6125(01)70124-7

    Article  Google Scholar 

  183. Weisensel L, Travitzky N, Sieber H, Greil P (2004) Laminated object manufacturing (LOM) of SiSiC composites. Adv Eng Mater 6:899–903. https://doi.org/10.1002/adem.200400112

    Article  Google Scholar 

  184. Travitzky N, Windsheimer H, Fey T, Greil P (2008) Preceramic paper-derived ceramics. J Am Ceram Soc 91:3477–3492. https://doi.org/10.1111/j.1551-2916.2008.02752.x

    Article  Google Scholar 

  185. Prechtl M, Otto A, Geiger M (2005) Rapid tooling by laminated object manufacturing of metal foil. Adv Mater Res 6–8:303–312. https://doi.org/10.4028/www.scientific.net/AMR.6-8.303

    Article  Google Scholar 

  186. Klosterman D, Chartoff R, Graves G, Osborne N, Priore B (1998) Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos Part Appl Sci Manuf 29:1165–1174. https://doi.org/10.1016/S1359-835X(98)00088-8

    Article  Google Scholar 

  187. Bogue R (2013) Recent developments in MEMS sensors: a review of applications, markets and technologies. Sens Rev 33:300–304. https://doi.org/10.1108/SR-05-2013-678

    Article  Google Scholar 

  188. Gupta K, Jain NK, Laubscher RF (2015) Spark erosion machining of miniature gears: a critical review. Int J Adv Manuf Technol 80:1863–1877. https://doi.org/10.1007/s00170-015-7130-2

    Article  Google Scholar 

  189. James T, Mannoor MS, Ivanov DV (2008) BioMEMS—advancing the frontiers of medicine. Sensors 8:6077–6107. https://doi.org/10.3390/s8096077

    Article  Google Scholar 

  190. Zheng XR, Zhang X (2011) Microsystems for cellular force measurement: a review. J Micromechanics Microengineering 21:054003. https://doi.org/10.1088/0960-1317/21/5/054003

    Article  Google Scholar 

  191. Lucarotti C, Oddo CM, Vitiello N, Carrozza MC (2013) Synthetic and bio-artificial tactile sensing: a review. Sensors 13:1435–1466. https://doi.org/10.3390/s130201435

    Article  Google Scholar 

  192. Fior R, Maggiolino S, Lazzarino M, Sbaizero O, Fior R, Lazzarino M, Maggiolino S (2011) A new transparent Bio-MEMS for uni-axial single cell stretching. Microsyst Technol 17:1581. https://doi.org/10.1007/s00542-011-1325-8

    Article  Google Scholar 

  193. Nuxoll E (2013) BioMEMS in drug delivery. Adv Drug Deliv Rev 65:1611–1625. https://doi.org/10.1016/j.addr.2013.07.003

    Article  Google Scholar 

  194. Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann 52:635–657. https://doi.org/10.1016/S0007-8506(07)60208-X

    Article  Google Scholar 

  195. Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 401:273–294. https://doi.org/10.1002/andp.19314010303

    Article  MATH  Google Scholar 

  196. Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 7:229–231. https://doi.org/10.1103/PhysRevLett.7.229

    Article  Google Scholar 

  197. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134. https://doi.org/10.1364/OL.22.000132

    Article  Google Scholar 

  198. Sun H-B, Takada K, Kawata S (2001) Elastic force analysis of functional polymer submicron oscillators. Appl Phys Lett 79:3173–3175. https://doi.org/10.1063/1.1418024

    Article  Google Scholar 

  199. Ushiba S, Shoji S, Masui K, Kuray P, Kono J, Kawata S (2013) 3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography. Carbon 59:283–288. https://doi.org/10.1016/j.carbon.2013.03.020

    Article  Google Scholar 

  200. Raimondi MT, Raimondi MT, Eaton SM, Eaton SM, Nava MM, Nava MM, Laganà M, Laganà M, Cerullo G, Cerullo G, Osellame R (2012) Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine. J Appl Biomater Funct Mater 10:56–66. https://doi.org/10.5301/JABFM.2012.9278

    Article  Google Scholar 

  201. Staudinger U, Zyla G, Krause B, Janke A, Fischer D, Esen C, Voit B, Ostendorf A (2017) Development of electrically conductive microstructures based on polymer/CNT nanocomposites via two-photon polymerization. Microelectron Eng 179:48–55. https://doi.org/10.1016/j.mee.2017.04.024

    Article  Google Scholar 

  202. Lee K-S, Kim RH, Yang D-Y, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33:631–681. https://doi.org/10.1016/j.progpolymsci.2008.01.001

    Article  Google Scholar 

  203. Li L, Fourkas JT (2007) Multiphoton polymerization. Mater Today 10:30–37. https://doi.org/10.1016/S1369-7021(07)70130-X

    Article  Google Scholar 

  204. Belfield KD, Schafer KJ, Mourad W, Reinhardt BA (2000) Synthesis of new two-photon absorbing fluorene derivatives via cu-mediated ullmann condensations. J Org Chem 65:4475–4481. https://doi.org/10.1021/jo991950+

    Article  Google Scholar 

  205. Ostendorf A, Neumeister A, Dudziak S, Passinger S, Stampfl J (2010) Micro- and nano-parts generated by laser-based solid freeform fabrication. In: Advances in laser materials processing. Woodhead Publishing, pp 695–734

    Google Scholar 

  206. Wang I, Bouriau M, Baldeck PL, Martineau C, Andraud C (2002) Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser. Opt Lett 27:1348–1350. https://doi.org/10.1364/OL.27.001348

    Article  Google Scholar 

  207. Martineau C, Lemercier G, Andraud C, Wang I, Bouriau M, Baldeck PL (2003) New initiator for two-photon absorption induced polymerization with a microlaser at 1.06 μm. Synth Met 138:353–356. https://doi.org/10.1016/S0379-6779(03)00111-5

    Article  Google Scholar 

  208. Honegger T, Elmberg T, Berton K, Peyrade D (2011) Visible microlaser two-photon polymerization in a microfludic cell: a resist study. Microelectron Eng 88:2725–2728. https://doi.org/10.1016/j.mee.2010.12.094

    Article  Google Scholar 

  209. Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt Lett 28:301–303. https://doi.org/10.1364/OL.28.000301

    Article  Google Scholar 

  210. Nguyen AK, Narayan RJ (2017) Two-photon polymerization for biological applications. Mater Today 20:314–322. https://doi.org/10.1016/j.mattod.2017.06.004

    Article  Google Scholar 

  211. Kawata S, Sun H-B, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697. https://doi.org/10.1038/35089130

    Article  Google Scholar 

  212. Baldacchini T, LaFratta CN, Farrer RA, Teich MC, Saleh BEA, Naughton MJ, Fourkas JT (2004) Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization. J Appl Phys 95:6072–6076. https://doi.org/10.1063/1.1728296

    Article  Google Scholar 

  213. Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B, Sakellari I, Giakoumaki A, Gray D, Vamvakaki M, Farsari M, Fotakis C (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2:2257–2262. https://doi.org/10.1021/nn800451w

    Article  Google Scholar 

  214. Brigo L, Urciuolo A, Giulitti S, Della Giustina G, Tromayer M, Liska R, Elvassore N, Brusatin G (2017) 3D high-resolution two-photon crosslinked hydrogel structures for biological studies. Acta Biomater 55:373–384. https://doi.org/10.1016/j.actbio.2017.03.036

    Article  Google Scholar 

  215. Zhang Y-L, Chen Q-D, Xia H, Sun H-B (2010) Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5:435–448. https://doi.org/10.1016/j.nantod.2010.08.007

    Article  Google Scholar 

  216. Xiong W, Jiang LJ, Baldacchini T, Lu YF (2017) Laser additive manufacturing using nanofabrication by integrated two-photon polymerization and multiphoton ablation. In: Brandt M (ed) Laser additive manufacturing. Woodhead Publishing, pp 237–256

    Google Scholar 

  217. Lusquiños F, Comesaña R, Riveiro A, Quintero F, Pou J (2009) Fibre laser micro-cladding of Co-based alloys on stainless steel. Surf Coat Technol 203:1933–1940. https://doi.org/10.1016/j.surfcoat.2009.01.020

    Article  Google Scholar 

  218. Debrincat DP, Solnordal CB, Van Deventer JSJ (2008) Characterisation of inter-particle forces within agglomerated metallurgical powders. Powder Technol 182:388–397. https://doi.org/10.1016/j.powtec.2007.07.001

    Article  Google Scholar 

  219. Geldart D (1972) The effect of particle size and size distribution on the behaviour of gas-fluidised beds. Powder Technol 6:201–215. https://doi.org/10.1016/0032-5910(72)83014-6

    Article  Google Scholar 

  220. Valverde JM, Quintanilla M a. S, Castellanos A, Lepek D, Quevedo J, Dave RN, Pfeffer R (2008) Fluidization of fine and ultrafine particles using nitrogen and neon as fluidizing gases. AIChE J 54:86–103. https://doi.org/10.1002/aic.11329

    Article  Google Scholar 

  221. Chen Y, Yang J, Dave RN, Pfeffer R (2008) Fluidization of coated group C powders. AIChE J 54:104–121. https://doi.org/10.1002/aic.11368

    Article  Google Scholar 

  222. Matsusaka S, Urakawa M, Masuda H (1995) Micro-feeding of fine powders using a capillary tube with ultrasonic vibration. Adv Powder Technol 6:283–293. https://doi.org/10.1016/S0921-8831(08)60518-X

    Article  Google Scholar 

  223. Yang Y, Li X (2003) Experimental and analytical study of ultrasonic micro powder feeding. J Phys Appl Phys 36:1349. https://doi.org/10.1088/0022-3727/36/11/316

    Article  Google Scholar 

  224. Lu X, Yang S, Evans JRG (2006) Studies on ultrasonic microfeeding of fine powders. J Phys Appl Phys 39:2444. https://doi.org/10.1088/0022-3727/39/11/020

    Article  Google Scholar 

  225. Li X, Choi H, Yang Y (2002) Micro rapid prototyping system for micro components. Thin Solid Films 420–421:515–523. https://doi.org/10.1016/S0040-6090(02)00935-5

    Article  Google Scholar 

  226. del Val J, Comesaña R, Lusquiños F, Riveiro A, Quintero F, Pou J (2010) Downscaling of conventional laser cladding technique to microengineering. Phys Procedia 5:341–348. https://doi.org/10.1016/j.phpro.2010.08.155

    Article  Google Scholar 

  227. Comesaña R, Lusquiños F, del Val J, Quintero F, Riveiro A, Boutinguiza M, Jones JR, Hill RG, Pou J (2015) Toward smart implant synthesis: bonding bioceramics of different resorbability to match bone growth rates. Sci Rep 5:10677. https://doi.org/10.1038/srep10677

    Article  Google Scholar 

  228. Scipioni Bertoli U, Guss G, Wu S, Matthews MJ, Schoenung JM (2017) In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater Des 135:385–396. https://doi.org/10.1016/j.matdes.2017.09.044

    Article  Google Scholar 

  229. Qi L, Zeng X, Zhou J, Luo J, Chao Y (2011) Stable micro-feeding of fine powders using a capillary with ultrasonic vibration. Powder Technol 214:237–242. https://doi.org/10.1016/j.powtec.2011.08.015

    Article  Google Scholar 

  230. Ru C, Luo J, Xie S, Sun Y (2014) A review of non-contact micro- and nano-printing technologies. J Micromech Microeng 24:053001. https://doi.org/10.1088/0960-1317/24/5/053001

    Article  Google Scholar 

  231. Bremen S, Meiners W, Diatlov A (2012) Selective laser melting. Laser Tech J 9:33–38. https://doi.org/10.1002/latj.201290018

    Article  Google Scholar 

  232. Piili H, Happonen A, Väistö T, Venkataramanan V, Partanen J, Salminen A (2015) Cost estimation of laser additive manufacturing of stainless steel. Phys Procedia 78:388–396. https://doi.org/10.1016/j.phpro.2015.11.053

    Article  Google Scholar 

  233. Thomas DS, Gilbert SW (2014) Costs and cost effectiveness of additive manufacturing. Spec Publ NIST SP—1176

    Google Scholar 

  234. Kotz F, Arnold K, Bauer W, Schild D, Keller N, Sachsenheimer K, Nargang TM, Richter C, Helmer D, Rapp BE (2017) Three-dimensional printing of transparent fused silica glass. Nature 544:337. https://doi.org/10.1038/nature22061

    Article  Google Scholar 

  235. Sing SL, Yeong WY, Wiria FE, Tay BY, Zhao Z, Zhao L, Tian Z, Yang S (2017) Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyp J 23:611–623. https://doi.org/10.1108/RPJ-11-2015-0178

    Article  Google Scholar 

  236. Ivanova O, Williams C, Campbell T (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp J 19:353–364. https://doi.org/10.1108/RPJ-12-2011-0127

    Article  Google Scholar 

  237. Alfieri V, Argenio P, Caiazzo F, Sergi V (2016) Reduction of surface roughness by means of laser processing over additive manufacturing metal parts. Materials 10:30. https://doi.org/10.3390/ma10010030

    Article  Google Scholar 

  238. Merklein M, Junker D, Schaub A, Neubauer F (2016) Hybrid additive manufacturing technologies—an analysis regarding potentials and applications. Phys Procedia 83:549–559. https://doi.org/10.1016/j.phpro.2016.08.057

    Article  Google Scholar 

  239. Guo N, Leu MC, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8:215–243. https://doi.org/10.1007/s11465-013-0248-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the EU research project Bluehuman (EAPA_151/2016 Interreg Atlantic Area), Government of Spain (MAT2015-71459-C2-P, FPU13/02944, and FPU15/04745 grants), and by Xunta de Galicia (ED431B 2016/042 (GPC), and Plan I2C Grant Program POS-A/2013/161, ED481B 2016/047-0, ED481D 2017/010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Riveiro or J. del Val .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riveiro, A. et al. (2019). Laser Additive Manufacturing Processes for Near Net Shape Components. In: Gupta, K. (eds) Near Net Shape Manufacturing Processes. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-10579-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10579-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10578-5

  • Online ISBN: 978-3-030-10579-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics