Skip to main content

Isolation and Characterization of Antifungal Secondary Metabolites Produced by Rhizobacteria from Common Bean

  • Chapter
  • First Online:
Microbial Probiotics for Agricultural Systems

Abstract

Conventional management of crops implies excessive use of fungicides. Rhizobacteria with antagonistic effects against phytopathogens constitute an alternative to chemical control. The aim of this work was to isolate and characterize secondary metabolites with antifungal activity produced by rhizobacteria. Several bacterial strains isolated from the rhizosphere of common bean plants were evaluated for their ability to suppress the growth of fungal phytopathogens due to the production of volatile and non-volatile compounds. Among them, Bacillus sp. B02 was selected as an antagonistic microorganism with capacity to produce non-volatile metabolites. Antifungal compounds were produced at 72 h in mineral broth supplemented with starch (20 g l−1) and yeast extract (5 g l−1). The metabolites were isolated from cell free supernatants by precipitation after they were acidified to pH 2 and characterized by their polarity and by thin layer chromatography (TLC) analysis. Lipophilic compounds were extracted using a chloroform:methanol (2:1, v/v) system. In addition, polar antifungal compounds were presented in butanol, acetone and methanol crude extracts. The extracts inhibited the mycelial growth of R. solani. TLC revealed the presence of lipid compounds when iodine vapor was used as reagent. This result showed the amphiphilic character of the antifungal compounds produced by Bacillus sp. B02 which probably correspond to lipopeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aparna, A., Srinikethan, G., & Hegde, S. (2012). Isolation, screening and production of biosurfactant by Bacillus clausii 5B. Research in Biotechnology, 3, 49–56.

    Google Scholar 

  • Arrebola, E., Sivakumar, D., & Korsten, L. (2010). Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biological Control, 53, 122–128.

    Article  CAS  Google Scholar 

  • Calvo, P., Ormeño, E., Martínez, E., & Zúñiga, D. (2010). Characterization of Bacillus isolates of potato rhizosphere from andean soils of Peru and their potential PGPR characteristics. Brazilian Journal of Microbiology, 41, 899–906.

    Article  Google Scholar 

  • Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena, M. (2015). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial Biotechnology, 8, 281–295.

    Article  CAS  Google Scholar 

  • Challis, G., Ravel, J., & Townsend, C. (2000). Predictive structure based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chemistry & Biology, 7, 211–224.

    Article  CAS  Google Scholar 

  • Chaves‐Lopez, C., Serio, A., Gianotti, A., Sacchetti, G., Ndagijimana, M., Ciccarone, C., Stellarini, A., Corsetti, A., & Paparella, A. (2015). Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. Journal of Applied Microbiology, 119, 487–499.

    Article  Google Scholar 

  • Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42. A review. Frontiers in Microbiology, 6, 780.

    Article  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clément, C., & Ait Barka, E. (2015). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.

    Article  Google Scholar 

  • Debois, D., Fernandez, O., Franzil, L., Jourdan, E., De Brogniez, A., Willems, L., Clément, C., Dorey, S., & De Pauw, E. (2015). Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environmental Microbiology Reports, 7, 570–582.

    Article  CAS  Google Scholar 

  • Fernando, D. W. G., Ramarathnama, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37, 955–964.

    Article  CAS  Google Scholar 

  • Gong, A. D., Li, H. P., Yuan, Q. S., Song, X. S., Yao, W., He, W. J., Zhang, J. B., & Liao, Y. C. (2015). Antagonistic mechanism of Iturin A and Plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One, 10, 1–18.

    CAS  Google Scholar 

  • Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10, 272–290.

    Google Scholar 

  • Hossain, M. T., Khan, A., Chung, E. J., Rashid, M. H. O., & Chung, Y. R. (2016). Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathology Journal, 32, 228–241.

    Article  CAS  Google Scholar 

  • Kim, J. S., Lee, J., Lee, C. H., Woo, S. Y., Kang, H., Seo, S. G., & Kim, S. H. (2015). Activation of pathogenesis-related genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathology Journal, 31, 195–201.

    Article  CAS  Google Scholar 

  • Lim, S. M., Yoon, M. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Shin, T. S., Park, H. W., Yu, N. H., Kim, Y. H., & Kim, J. C. (2017). Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various Phytopathogenic Fungi. Plant Pathology Journal, 33, 488–498.

    Article  CAS  Google Scholar 

  • Mandal, S. M., Sharma, S., Pinnaka, A., Kumari, A. K., & Korpole, S. (2013). Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiology, 13, 152–160.

    Article  CAS  Google Scholar 

  • Memenza, M., Mostacero, E., Camarena, F., & Zuñiga, D. (2016). Disease control and plant growth promotion (PGP) of selected bacterial strains in Phaseolus vulgaris. In F. Gonzales-Andres & E. James (Eds.), Biological nitrogen fixation and beneficial plant – Microbe interactions (pp. 237–245). Cham: Springer.

    Chapter  Google Scholar 

  • Nam, H. S., Yang, H.-J., Oh, B. J., Anderson, A. J., & Kim, Y. C. (2016). Biological control potential of Bacillus amyloliquefaciens KB3 isolated from the feces of Allomyrina dichotoma larvae. Plant Pathology Journal, 32, 273–280.

    Article  CAS  Google Scholar 

  • Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.

    Article  CAS  Google Scholar 

  • Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology & Biotechnological Equipment, 31, 446–459.

    Article  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  • Tanaka, K., Amaki, Y., Ishihara, A., & Nakajima, H. (2015). Synergistic effects of [Ile7] surfactin homologues with bacillomycin D in suppression of gray mold disease by Bacillus amyloliquefaciens biocontrol strain SD-32. Journal of Agricultural and Food Chemistry, 63, 5344–5353.

    Article  CAS  Google Scholar 

  • Torres, M. J., Pérez, C., Daniela, B., Sabaté, D. C., Petroselli, G., Erra-Balsells, R., & Audisio, M. C. (2017). Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biological Control, 105, 93–99.

    Article  CAS  Google Scholar 

  • Tsuge, K., Inoue, S., Ano, T., Itaya, M., & Shoda, M. (2005). Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrobial Agents and Chemotherapy, 49, 4641–4648.

    Article  CAS  Google Scholar 

  • Vater, J., Kablitz, B., Wilde, F. P., Mehta, N., & Cameotra, S. S. (2002). Matrix-assisted laser desorption ionization—Time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Applied and Environmental Microbiology, 68, 6210–6219.

    Article  CAS  Google Scholar 

  • Velasquez, A., Castroverde, C., & Yamg He, S. (2018). Plant–pathogen warfare under changing climate conditions. Current Biology, 10, 19–34.

    Google Scholar 

  • Venkadesan, D., & Sumathi, V. (2015). Screening of lactic acid bacteria for their antibacterial activity against milk borne pathogens. IJAR, 1, 970–973.

    Google Scholar 

  • Weisburg, W., Barns, S., Pelletier, D., & Lane, D. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    Article  CAS  Google Scholar 

  • Zeriouh, H., Romero, D., Garcia-Gutierrez, L., Cazorla, F. M., De Vicente, A., & Perez-García. (2011). The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular Plant-Microbe Interactions, 24, 1540–1552.

    Article  CAS  Google Scholar 

  • Zhang, J., Xue, Q., Gao, H., Lai, H., & Wang, P. (2016). Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microbial Cell Factories, 15, 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Programa Nacional de Innovación para la Competitividad y Productividad (Innovate Perú) via grant contract 158-PNCIP-PIAP-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Zúñiga-Dávila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Memenza-Zegarra, M., Zúñiga-Dávila, D. (2019). Isolation and Characterization of Antifungal Secondary Metabolites Produced by Rhizobacteria from Common Bean. In: Zúñiga-Dávila, D., González-Andrés, F., Ormeño-Orrillo, E. (eds) Microbial Probiotics for Agricultural Systems. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-17597-9_9

Download citation

Publish with us

Policies and ethics