Skip to main content

Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11678))

Abstract

Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series forecasting methods is to consider the set of values over time that facilitates the prediction of future value. In this sense, we propose a new feature vector based on the correlation and autocorrelation functions. These measures reflect how the observations of a time series are related to each other. Then, univariate forecasting is performed using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep neural network. Finally, we compared the new model with linear and non-linear models. Reported results exhibit that MLP and LSTM models using the proposed feature vector, they show promising results for univariate forecasting. We tested our method on a real-world dataset from the Fisher weather station (Harvard Forest).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adhikari, R., Agrawal, R.K.: An introductory study on time series modeling and forecasting (2013). https://doi.org/10.13140/2.1.2771.8084

  2. Alavi, S.E., Sinaei, H., Afsharirad, E.: Predict the trend of stock prices using machine learning techniques. Int. Acad. J. Econ. 2(12), 1–11 (2015)

    Google Scholar 

  3. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51, 1–29 (2016). https://doi.org/10.1007/s10115-016-0987-z

    Article  Google Scholar 

  4. Bengio, Y., Courville, A.C., Vincent, P.: Unsupervised feature learning and deep learning: a review and new perspectives. CoRR, abs/1206.5538 1 (2012)

    Google Scholar 

  5. Boose, E.: Fisher meteorological station (since 2001). Harvard Forest Data Archive: HF001 (2001). https://doi.org/10.6073/pasta/04076dfd30b286c6c29301b6345a63f5

  6. Cheng, H., Tan, P.-N., Gao, J., Scripps, J.: Multistep-ahead time series prediction. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 765–774. Springer, Heidelberg (2006). https://doi.org/10.1007/11731139_89

    Chapter  Google Scholar 

  7. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)

    MATH  Google Scholar 

  8. Deng, L., et al.: Recent advances in deep learning for speech research at microsoft. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8604–8608. IEEE (2013)

    Google Scholar 

  9. Doucoure, B., Agbossou, K., Cardenas, A.: Time series prediction using artificial wavelet neural network and multi-resolution analysis: application to wind speed data. Renew. Energy 92, 202–211 (2016). https://doi.org/10.1016/j.renene.2016.02.003. http://www.sciencedirect.com/science/article/pii/S0960148116301045

    Article  Google Scholar 

  10. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2147–2154 (2014)

    Google Scholar 

  11. Hu, F., Li, L., Xu, X., Wang, J., Zhang, J.: Opinion extraction by distinguishing term dependencies and digging deep text features. NeuralComputing and Applications, February 2018. https://doi.org/10.1007/s00521-018-3372-x

  12. Isasi Viñuela, P., Galván León, I.: Redes de neuronas artificiales. Un Enfoque Práctico, Editorial Pearson Educación SA Madrid España (2004)

    Google Scholar 

  13. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent network architectures. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 2342–2350, JMLR.org (2015). http://dl.acm.org/citation.cfm?id=3045118.3045367

  14. Längkvist, M.: Modeling time-series with deep networks (2014)

    Google Scholar 

  15. Längkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn. Lett. 42, 11–24 (2014)

    Article  Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E.P.: Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers. Manag. 112, 115–124 (2016). https://doi.org/10.1016/j.enconman.2016.01.007. http://www.sciencedirect.com/science/article/pii/S0196890416000236

    Article  Google Scholar 

  18. Mahalakshmi, G., Sridevi, S., Rajaram, S.: A survey on forecasting of time series data. In: 2016 International Conference on Computing Technologies and Intelligent Data Engineering, ICCTIDE 2016, pp. 1–8, January 2016. https://doi.org/10.1109/ICCTIDE.2016.7725358

  19. Mauricio, J.A.: Introducción al análisis de series temporales. Universidad complutense de Madrid (2003)

    Google Scholar 

  20. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. ICML 3(28), 1310–1318 (2013)

    Google Scholar 

  21. Prakash, P., Pal, A.: Practical Time Series Analysis. Packt Publishing, Birmingham (2017)

    Google Scholar 

  22. Sapankevych, N.I., Sankar, R.: Time series prediction using support vector machines: a survey. IEEE Comput. Intell. Mag. 4(2), 24–38 (2009). https://doi.org/10.1109/MCI.2009.932254

    Article  Google Scholar 

  23. Schulz, H., Behnke, S.: Deep learning. KI-Künstliche Intelligenz 26(4), 357–363 (2012)

    Article  Google Scholar 

  24. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, pp. 2553–2561 (2013)

    Google Scholar 

  25. Tsay, R.S.: Analysis of financial time series, vol. 543. Wiley, Hoboken (2005)

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to FONDECYT, which is an initiative of the National Council of Science, Technology and Technological Innovation (CONCYTEC), for promoting and financing collaborative research through the research circle N\(^{\circ }\) 148-2015-FONDECYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mery Milagros Paco Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramos, M.M.P., Del Alamo, C.L., Zapana, R.A. (2019). Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29888-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29887-6

  • Online ISBN: 978-3-030-29888-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics