Skip to main content

Application of the Computer Vision System to the Measurement of the CIE L*a*b* Color Parameters of Fruits

  • Conference paper
  • First Online:
Advances in Artificial Intelligence, Software and Systems Engineering (AHFE 2020)

Abstract

The first thing the consumer uses without tasting the fruit is the sense of sight. Human vision can be replaced by a digital camera and under specific conditions we can measure the color parameters of fruits. The color determination of Tommy Atkins mango, papaya, star fruit and golden berry were performed using the standardized computer vision system. High coefficients of determination (R2) were obtained, explained by the linear regression model, for parameter L* (0.9986), for parameter a* (0.9992) and for parameter b* (0.9991). The CIE L*a*b* parameters for Tommy Atkins mango (L* = 74%, a* = 78.3% red, b* = 55% yellow), papaya (L* = 74%, a* = 15% of green, b* = 43.3% of yellow), star fruit (L* = 59%, a* = 18.3% of red, b* = 61.7% of yellow) and golden berry (L* = 67%, a* = 16.7% of red, b* = 85% of yellow).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patrício, D.I., Rieder, R.: Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review. Comput. Electron. Agric. 153, 69–81 (2018)

    Google Scholar 

  2. Pourdarbani, R., Sabzi, S., Kalantari, D., Hernández-Hernández, J.L., Arribas, J.I.: A computer vision system based on majority-voting ensemble neural network for the automatic classification of three chickpea varieties. Foods 9(2), 113 (2020)

    Google Scholar 

  3. Cavallo, D.P., Cefola, M., Pace, B., Logrieco, A.F., Attolico, G.: Non-destructive and contactless quality evaluation of table grapes by a computer vision system. Comput. Electron. Agric. 156, 558–564 (2019)

    Google Scholar 

  4. Sabzi, S., Javadikia, H., Arribas, J.I.: A three-variety automatic and non-intrusive computer vision system for the estimation of orange pH value. Measurement 152, 107298 (2020)

    Google Scholar 

  5. Leme, D.S., da Silva, S.A., Barbosa, B.H.G., Borém, F.M., Pereira, R.G.F.A.: Recognition of coffee roasting degree using a computer vision system. Comput. Electron. Agric. 156, 312–317 (2019)

    Google Scholar 

  6. Ireri, D., Belal, E., Okinda, C., Makange, N., Ji, C.: A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing. Artif. Intell. Agric. 2, 28–37 (2019)

    Google Scholar 

  7. Yossy, E.H., Pranata, J., Wijaya, T., Hermawan, H., Budiharto, W.: Mango fruit sortation system using neural network and computer vision. Procedia Comput. Sci. 116, 596–603 (2017)

    Google Scholar 

  8. Nadafzadeh, M., Abdanan Mehdizadeh, S., Soltanikazemi, M.: Development of computer vision system to predict peroxidase and polyphenol oxidase enzymes to evaluate the process of banana peel browning using genetic programming modeling. Sci. Hortic. 231, 201–209 (2018)

    Google Scholar 

  9. Tripathi, M.K., Maktedar, D.D.: A role of computer vision in fruits and vegetables among various horticulture products of agriculture fields: a Survey. Information Processing in Agriculture (2019)

    Google Scholar 

  10. Bhargava, A., Bansal, A.: Fruits and vegetables quality evaluation using computer vision: a review. J. King Saud Univ. Comput. Inf. Sci. (2018). https://doi.org/10.1016/j.jksuci.2018.06.002

    Article  Google Scholar 

  11. Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., Liu, C.: Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: a review. Food Res. Int. 62, 326–343 (2014)

    Google Scholar 

  12. Li, S., Luo, H., Hu, M., Zhang, M., Feng, J., Liu, Y., Dong, Q., Liu, B.: Optical non-destructive techniques for small berry fruits: a review. Artif. Intell. Agric. 2, 85–98 (2019)

    Google Scholar 

  13. Mohd Ali, M., Hashim, N., Abdul Hamid, A.S.: Combination of laser-light backscattering imaging and computer vision for rapid determination of oil palm fresh fruit bunches maturity. Comput. Electron. Agric. 169, 105235 (2020)

    Google Scholar 

  14. Cömert, E.D., Mogol, B.A., Gökmen, V.: Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Food Sci. 2, 1–10 (2020)

    Google Scholar 

  15. Minaei, S., Kiani, S., Ayyari, M., Ghasemi-Varnamkhasti, M.: A portable computer-vision-based expert system for saffron color quality characterization. J. Appl. Res. Med. Aromat. Plants 7, 124–130 (2017)

    Google Scholar 

  16. Cubero, S., Albert, F., Prats-Moltalbán, J.M., Fernández-Pacheco, D.G., Blasco, J., Aleixos, N.: Application for the estimation of the standard citrus colour index (CCI) using image processing in mobile devices. Biosys. Eng. 167, 63–74 (2018)

    Google Scholar 

  17. Pothen, Z., Nuske, S.: Automated assessment and mapping of grape quality through image-based color analysis. IFAC-PapersOnLine 49(16), 72–78 (2016)

    Google Scholar 

  18. Tan, K., Lee, W.S., Gan, H., Wang, S.: Recognising blueberry fruit of different maturity using histogram oriented gradients and colour features in outdoor scenes. Biosys. Eng. 176, 59–72 (2018)

    Google Scholar 

  19. Gené-Mola, J., Vilaplana, V., Rosell-Polo, J.R., Morros, J.-R., Ruiz-Hidalgo, J., Gregorio, E.: KFuji RGB-DS database: fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data. Data Brief 25, 104289 (2019)

    Google Scholar 

  20. Donis-González, I.R., Guyer, D.E.: Classification of processing asparagus sections using color images. Comput. Electron. Agric. 127, 236–241 (2016)

    Google Scholar 

  21. Cárdenas-Pérez, S., Chanona-Pérez, J., Méndez-Méndez, J.V., Calderón-Domínguez, G., López-Santiago, R., Perea-Flores, M.J., Arzate-Vázquez, I.: Evaluation of the ripening stages of apple (Golden Delicious) by means of computer vision system. Biosys. Eng. 159, 46–58 (2017)

    Google Scholar 

  22. Jana, S., Parekh, R., Sarkar, B.: A De novo approach for automatic volume and mass estimation of fruits and vegetables. Optik 200, 163443 (2020)

    Google Scholar 

  23. Concha-Meyer, A., Eifert, J., Wang, H., Sanglay, G.: Volume estimation of strawberries, mushrooms, and tomatoes with a machine vision system. Int. J. Food Prop. 21(1), 1867–1874 (2018)

    Google Scholar 

  24. Zielinska, M., Michalska, A.: Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chem. 212, 671–680 (2016)

    Google Scholar 

  25. Salehi, F., Kashaninejad, M.: Modeling of moisture loss kinetics and color changes in the surface of lemon slice during the combined infrared-vacuum drying. Inf. Process. Agric. 5(4), 516–523 (2018)

    Google Scholar 

  26. Benalia, S., Cubero, S., Prats-Montalbán, J.M., Bernardi, B., Zimbalatti, G., Blasco, J.: Computer vision for automatic quality inspection of dried figs (Ficus carica L) in real-time. Comput. Electron. Agric. 120, 17–25 (2016)

    Google Scholar 

  27. Lv, W., Li, D., Lv, H., Jin, X., Han, Q., Su, D., Wang, Y.: Recent Development of microwave fluidization technology for drying of fresh fruits and vegetables. Trends Food Sci. Technol. 86, 59–67 (2019)

    Google Scholar 

  28. Seyedabadi, E., Khojastehpour, M., Abbaspour-Fard, M.H.: Online measuring of quality changes of banana slabs during convective drying. Eng. Agric. Environ. Food 12(1), 111–117 (2019)

    Google Scholar 

  29. Wang, D., Martynenko, A., Corscadden, K., He, Q.: Computer vision for bulk volume estimation of apple slices during drying. Drying Technol. 35(5), 616–624 (2016)

    Google Scholar 

  30. Nadian, M.H., Abbaspour-Fard, M.H., Martynenko, A., Golzarian, M.R.: An intelligent integrated control of hybrid hot air-infrared dryer based on fuzzy logic and computer vision system. Comput. Electron. Agric. 137, 138–149 (2017)

    Google Scholar 

  31. Seyedabadi, E., Khojastehpour, M., Abbaspour-Fard, M.H.: Online measuring of quality changes of banana slabs during convective drying. Eng. Agric. Environ. Food 12(1), 111–117 (2018)

    Google Scholar 

  32. Gonzalez, R.C., Woods, R.E.: Digital image Processing, 4th edn. Pearson, New York (2018)

    Google Scholar 

  33. Duda, R.O., Hart, P.E., Store, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, New York (2007)

    Google Scholar 

  34. CIE (Commission Internationale de l’Éclairage).: Colorimetry. Part 4: CIE 1976 L*a*b* Colour space. ISO/CIE 11664-4:2019(E). Commission Internationale de l’Éclairage, Vienna, Austria (2019)

    Google Scholar 

  35. Li, L.T.: Food physics. China Agricultural Press, Beijing (2001)

    Google Scholar 

  36. Zhang, Y.-F., Li, J.-B., Zhang, Z.-Y., Wei, Q.-S., Fang, K.: Rheological law of change and conformation of potato starch paste in an ultrasound field. J. Food Measur. Charact. 13, 1695–1704 (2019)

    Google Scholar 

  37. Miranda-Zamora, W.R.: Determinación de los parámetros del color (L*, a* y b*) de alimentos utilizando un método alternativo: sistema de visión por computadora. Tesis para optar el Grado de Doctor en Ingeniería Industrial. Escuela de Postgrado. Universidad Nacional de Piura, Piura, Perú (2012)

    Google Scholar 

  38. Miranda-Zamora, W.R., Vignolo, T.G., Leyva, N.L.: Ingeniería del tratamiento térmico de alimentos. Universidad Nacional de Piura, Piura (2012)

    Google Scholar 

  39. Miranda-Zamora, W.R., Stoforos, N.G.: Procesamiento térmico de alimentos. Teoría, práctica y cálculos. AMV (Antonio Madrid Vicente) Ediciones, Madrid-España (2016)

    Google Scholar 

  40. Tretola, M., Ottoboni, M., Di Rosa, A. R., Giromini, C., Fusi, E., Rebucci, R., Leone, F., Dell’Orto, V., Chiofalo, V., Pinotti, L.: Former food products safety evaluation: computer vision as an innovative approach for the packaging remnants detection. J. Food Qual. 1–6 (2017)

    Google Scholar 

  41. Naik, S., Patel, B.: Machine vision based fruit classification and grading: a review. Int. J. Comput, Appl. 170(9), 22–34 (2017)

    Google Scholar 

  42. Peng, Y., Adhiputra, K., Padayachee, A., Channon, H., Ha, M., Warner, R.D.: High oxygen modified atmosphere packaging negatively influences consumer acceptability traits of pork. Foods 8(11), 567 (2019)

    Google Scholar 

  43. Parafati, L., Palmeri, R., Trippa, D., Restuccia, C., Fallico, B.: Quality maintenance of beef burger patties by direct addiction or encapsulation of a prickly pear fruit extract. Front. Microbiol. 10, 1760 (2019)

    Google Scholar 

  44. Choe, J., Kim, H.-Y.: Comparison of three commercial collagen mixtures: quality characteristics of marinated pork loin ham. Food Sci. Anim. Res. 39(2), 345–353 (2019)

    Google Scholar 

  45. Zhuang, H., Rothrock Jr., M.J., Hiett, K.L., Lawrence, K.C., Gamble, G.R., Bowker, B.C., Keener, K.M.: In-Package air cold plasma treatment of chicken breast meat: treatment time effect. J. Food Qual. 2019, 1–7 (2019)

    Google Scholar 

  46. Karbowiak, T., Crouvisier-Urion, K., Lagorce, A., Ballester, J., Geoffroy, A., Roullier-Gall, C., Chanut, J., Gougeon, R.D., Schmitt-Kopplin, P., Bellat, J.-P.: Wine aging: a bottleneck story. NPJ Sci. Food 3, 14 (2019)

    Google Scholar 

  47. Martins, A.J., Cerqueira, M.A., Pastrana, L.M., Cunha, R.L., Vicente, A.A.: Sterol-based oleogels’ characterization envisioning food applications. J. Sci. Food Agric. 99(7), 3318–3325 (2018)

    Google Scholar 

  48. Ahmad, N.A., Yook Heng, L., Salam, F., Mat Zaid, M.H., Abu Hanifah, S.: A colorimetric pH sensor based on Clitoria sp and Brassica sp for monitoring of food spoilage using chromametry. Sensors 19(21), 4813 (2019)

    Google Scholar 

  49. Libera, J., Latoch, A., Wójciak, K.M.: Utilization of grape seed extract as a natural antioxidant in the technology of meat products inoculated with a probiotic strain of LAB. Foods 9(1), 103 (2020)

    Google Scholar 

  50. Hernández-Guerrero, S.E., Balois-Morales, R., Palomino-Hermosillo, Y.A., López-Guzmán, G.G., Berumen-Varela, G., Bautista-Rosales, P.U., Alejo-Santiago, G.: Novel edible coating of starch-based stenospermocarpic mango prolongs the shelf life of mango “Ataulfo” fruit. J. Food Qual. 2020, 1–9 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Jesús Sánchez Chero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chero, M.J.S., Zamora, W.R.M., Chero, J.A.S., Villarreyes, S.S.C. (2021). Application of the Computer Vision System to the Measurement of the CIE L*a*b* Color Parameters of Fruits. In: Ahram, T. (eds) Advances in Artificial Intelligence, Software and Systems Engineering. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1213. Springer, Cham. https://doi.org/10.1007/978-3-030-51328-3_47

Download citation

Publish with us

Policies and ethics