Skip to main content

Comparison of Hybrid Recurrent Neural Networks for Univariate Time Series Forecasting

  • Conference paper
  • First Online:
Book cover Intelligent Systems and Applications (IntelliSys 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1250))

Included in the following conference series:

Abstract

The work presented in this paper aims to improve the accuracy of forecasting models in univariate time series, for this it is experimented with different hybrid models of two and four layers based on recurrent neural networks such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). It is experimented with two time series corresponding to downward thermal infrared and all sky insolation incident on a horizontal surface obtained from NASA’s repository. In the first time series, the results achieved by the two-layer hybrid models (LSTM + GRU and GRU + LSTM) outperformed the results achieved by the non-hybrid models (LSTM + LSTM and GRU + GRU); while only two of six four-layer hybrid models (GRU + LSTM + GRU + LSTM and LSTM + LSTM + GRU + GRU) outperformed non-hybrid models (LSTM + LSTM + LSTM + LSTM and GRU + GRU + GRU + GRU). In the second time series, only one model (LSTM + GRU) of two hybrid models outperformed the two non-hybrid models (LSTM + LSTM and GRU + GRU); while the four-layer hybrid models, none could exceed the results of the non-hybrid models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flores, A., Tito, H., Silva, C.: Local average of nearest neighbors: univariate time series imputation. Int. J. Adv. Comput. Sci Appl. (IJACSA) 10(8), 45–50 (2019)

    Google Scholar 

  2. Flores, A., Tito, H., Centty, D.: Improving long short-term memory predictions with local average of nearest neighbors. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 10(11), 392–397 (2019)

    Google Scholar 

  3. Kyunghyun, C., Bart, V., Caglar, G., Dzmitry, B., Fethi, B., Holger, S., Yoshua, B.: Learning phrase representations using RNN encoder-decoder for statistical machine traslation. arxiv.org, pp. 1–15 (2014)

    Google Scholar 

  4. Gail, W., Yoav, G., Eran, Y.: On the practical computational power of finite precision RNNs for language recognition. arxiv.org, pp. 1–9 (2018)

    Google Scholar 

  5. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: 30th International Conference on Machine Learning, Atlanta, Georgia, USA (2013)

    Google Scholar 

  6. Paco, M., López Del Alamo, C., Alfonte, R.: Forecasting of meteorological weather time series through a feature vector based on correlation. In: 18th International Conference Computer Analysis of Images and Patterns CAIP 2019, Salerno, Italy (2019)

    Google Scholar 

  7. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. 35(8), 1798–1828 (2013)

    Google Scholar 

  8. Schmidhuber, J.: Deep learning in neural networks: an overview, arxiv.org (2014)

    Google Scholar 

  9. Asiful, M., Karim, R., Thulasiram, R.: Hybrid deep learning model for stock price prediction. In: IEEE Symposium Series on Computational Intelligence, SSCI, Bangalore, India (2018)

    Google Scholar 

  10. Fu, Y., Tang, M., Yu, R., Liu, B.: Multi-step ahead wind power forecasting based on recurrent neural networks, In: IEEE PES Asia-Pacific Power and Energy Engineering Conference, APPEEC, Kota Kinabalu, Malaysia (2018)

    Google Scholar 

  11. Liu, H., Mi, X., Li, Y., Duan, Z., Xu, Y.: Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression. Renvew. Energy 143, 842–854 (2019)

    Article  Google Scholar 

  12. Titos, M., Bueno, A., García, L., Benitez, M., Ibañez, J.: Detection and classification of continuous volcano-seismic signals with recurrent neural networks. IEEE Trans. Geosci. Remote Sens. 57(4), 1936–1948 (2018)

    Article  Google Scholar 

  13. Elsayed, N., Maida, A., Bayoumi, M.: Deep gated recurrent and convolutional network hybrid model for univariate time series classification. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 10(5), 654–664 (2019)

    Google Scholar 

  14. Diagne, M., David, M., Lauret, P., Boland, J., Schmutz, N.: Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 25, 65–76 (2013)

    Article  Google Scholar 

  15. Fouilloy, A., Voyant, C., Notton, G., Motte, F., Paoli, C., Nivet, M., Guillot, E., Duchaud, J.: Solar irradiation prediction with machine learning: forecasting models selection method depending on weather variability. Energy 165, 620–629 (2018)

    Article  Google Scholar 

  16. Lauret, P., Voyant, C., Soubdhan, T., David, M., Poggi, P.: A benchmarking of machine learning techniques for solar radiation forecasting in an insular context. Sol. Energy 112, 446–457 (2015)

    Article  Google Scholar 

  17. Moritz, S., Sardá, A., Bartz-Beielstein, T., Zaefferer, M., Stork, J.: Comparison of different methods for univariate time series imputation in R, arxiv.org (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anibal Flores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Flores, A., Tito, H., Centty, D. (2021). Comparison of Hybrid Recurrent Neural Networks for Univariate Time Series Forecasting. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1250. Springer, Cham. https://doi.org/10.1007/978-3-030-55180-3_28

Download citation

Publish with us

Policies and ethics