Skip to main content

Automatic Leaf Segmentation from Images Taken Under Uncontrolled Conditions Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Book cover Proceedings of the 5th Brazilian Technology Symposium

Abstract

Automatic leaf segmentation from images taken in-field in uncontrolled conditions is a very important problem that has not been properly reviewed and that is crucial due to its possible use as a previous step in classification algorithms that can be used in agriculture applications. In this work, a CNN architecture (LinkNet) was trained to solve the isolated leaf segmentation problem under natural conditions. To do so, an open dataset has been modified and augmented, using rotations, shearing, and artificial illumination changes, in order to have a proper amount of imagery for training and validation. We have tested the CNN in two different datasets: The first belongs to the original open dataset that shares some visual characteristics with training and validation dataset. The second one contained its own imagery from a different set (images from different plants and with different illumination conditions) in order to evaluate the CNN model generalization. We obtained a mean Intersection Over Union (IoU) value of 0.90 for the first test and a 0.92 for the second one. An analysis of these results has been made and some problems regarding classification applications were commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbedo, J.G.A: A new automatic method for disease symptom segmentation in digital photographs of plant leaves. Eur. J. Plant. Pathol. 147, 349–264 (2017)

    Google Scholar 

  2. Camargo, A., Smith, J.S.: An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosyst. Eng. 102, 9–21 (2009)

    Article  Google Scholar 

  3. Salazar-Reque, I.F., Huamán, S.G., Kemper, G., Telles, J., Diaz, D.: An algorithm for plant disease visual symptom detection in digital images based on superpixels. Int. J. Adv. Sci. Eng. Inf. Technol. 9, 194–203 (2019)

    Article  Google Scholar 

  4. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Frontiers Plant Sci. 7, 1–10 (2016)

    Article  Google Scholar 

  5. Barbedo, J.G.A: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput. Electron. Agricul. 153, 46–53 (2018)

    Google Scholar 

  6. Arjovsky, M., Bottou, L., López-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  7. Soares, J.V.B., Jacobs, D.W.: Efficient segmentation of leaves in semi-controlled conditions. Mach. Vis. Appl. 24, 1623–1643 (2013)

    Article  Google Scholar 

  8. Salazar-Reque, I.F., Pacheco A.G., Rodriguez. R.Y., Lezama, J.G., Huamán, S.G.: An image processing method to automatically identify Avocado leaf state. In: 22nd Symposium on Image, Signal Processing and Artificial Vision (STSIVA). pp. 1–5. IEEE Press, Bucaramanga, Colombia (2019)

    Google Scholar 

  9. Scharr, H., Minervini, M., French, A.P., et al.: Leaf segmentation in plant phenotyping: a collation study. Mach. Vis. Appl. 27, 585–606 (2016)

    Article  Google Scholar 

  10. Morris, D.: A pyramid CNN for dense-leaves segmentation. In: 15th Conference on Computer and Robot Vision (CRV). pp. 238–245. IEEE Press, Toronto, Canada (2018)

    Google Scholar 

  11. Aich, S., Stavness, I.: Leaf counting with deep convolutional and deconvolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2080–2089. IEEE Press, Venice, Italy (2017)

    Google Scholar 

  12. Romera-Paredes, B., Torr, P.H.S.: Recurrent instance segmentation. In: European Conference on Computer Vision. pp. 312–329. Springer, Cham, (2016)

    Google Scholar 

  13. Ren, M., Zemel, R.S.: End-to-end instance segmentation with recurrent attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6656–6664. IEEE Press, Honolulu, Hawaii (2017)

    Google Scholar 

  14. Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). pp. 1–4. IEEE Press, St. Petersburg, FL, USA (2017)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237 (2019)

Download references

Acknowledgements

The authors thank FONDECYT PERU for the funds allocated to the project 97-2018-FONDECYT-BM-IADT-AV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Franco Salazar-Reque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salazar-Reque, I.F., Huamán Bustamante, S.G. (2021). Automatic Leaf Segmentation from Images Taken Under Uncontrolled Conditions Using Convolutional Neural Networks. In: Iano, Y., Arthur, R., Saotome, O., Kemper, G., Borges Monteiro, A.C. (eds) Proceedings of the 5th Brazilian Technology Symposium. Smart Innovation, Systems and Technologies, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-030-57566-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57566-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57565-6

  • Online ISBN: 978-3-030-57566-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics