Skip to main content

Modelling the Northern Humboldt Current Ecosystem: From Winds to Predators

  • Chapter
  • First Online:
Marine Coastal Ecosystems Modelling and Conservation

Abstract

Atmospheric models with embedded domains off Peru have been used to simulate surface winds. Coastal wind dynamics were simulated to investigate the effect of two warming conditions: impact of El Niño event and impact of regional climate change. During the 1997–1998 El Niño, a counter-intuitive coastal wind increase was observed; sensitivity experiments showed that the inhomogeneous alongshore surface warming, larger in the north, drives an enhanced alongshore pressure gradient that accelerates the alongshore wind. Under the “worst case” RCP8.5 climate change scenario, coastal summer winds decrease (<5%) whereas coastal winter winds increase (<10%), thus slightly reinforcing the seasonal cycle, these wind changes were mainly associated with changes in the intensity and position of the South Pacific Anticyclone. Physical-biogeochemical models off Peru have been used to reproduce the oceanographic conditions from 1958 to 2008. Primary productivity and dissolved oxygen were simulated to investigate the effect of El Niño events. During El Niño, the productivity decreases due to nutrient depletion associated with intense downwelling Coastal Trapped Waves and due to an enhanced light limitation in summer. The surface layer becomes more ventilated as the oxycline deepens in association with the thermocline. The enhanced eddy kinetic energy also impacts eddy fluxes of nutrient and oxygen. During the last decades, the large-scale remote forcing associated with equatorial variability mainly drives the summer chlorophyll increase and progressive deoxygenation trends during the last decades, whereas local winds play a minor role.

Multispecific ecotrophic models of the Northern Humboldt Current Ecosystem have been used to simulate energy flows through the food web, during El Niño and La Niña conditions. Steady-state models simulated a decrease in total throughput and ecosystem organization during 1997–98 El Niño. Time dynamic models simulated contributions of several external drivers, being most important fishing rate, followed by mesopelagics immigration and phytoplankton changes. These basic models will contribute to implement the ecosystem approach to fisheries, allowing to assess the impact of fishing and environmental factors on economically important species such as anchovy and hake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, A., Echevin, V., Lévy, M., & Aumont, O. (2010). Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system. Journal of Geophysical Research, 115, C12033. https://doi.org/10.1029/2010JC006569.

    Article  Google Scholar 

  • Arntz, W. E., Gallardo, V. A., Gutíerrez, D., Isla, E., Levin, L. A., Mendo, J., Neir, C., Rowe, G. T., Tarazona, J., & Wolff, M. (2006). El Nino and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Advances in Geosciences, 6, 243–265.

    Google Scholar 

  • Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., & Gehlen, M. (2015). PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Development, 8, 2465–2513. https://doi.org/10.5194/gmd-8-2465-2015.

    Article  CAS  Google Scholar 

  • Aguirre-Velarde, A., Pecquerie, L., Jean, F., Thouzeau,G., & Flye-Sainte-Marie, J. (2019). Predicting the energy budget of the scallop Argopecten purpuratus in an oxygen–limiting environment. Journal of Sea Research, 143, 254–261. https://doi.org/10.1016/j.seares.2018.09.011ff.ffhal02114544f.

  • Avadí, A., Fréon, P., & Tam, J. (2014). Coupled ecosystem/supply chain modelling of fish products from sea to shelf: The Peruvian Anchovy Case. PLoS ONE, 9, 1–21.

    Article  Google Scholar 

  • Bakun, A. (1996). Patterns in the ocean: Ocean processes and marine population dynamics. 7. https://doi.org/10.1016/s0278-4343(97)00037-x

  • Barber, R. T., & Chavez, F. P. (1983). Biological consequences of El Niño, Sciences, 222, 1203–1210. https://doi.org/10.1126/science.222.4629.1203.

  • Belmadani, A., Echevin, V., Codron, F., Takahashi, K., & Junquas, C. (2014). What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile? Climate Dynamics, 43, 1893–1914. https://doi.org/10.1007/s00382-013-2015-2.

    Article  Google Scholar 

  • Belmadani, A., Echevin, V., Dewitte, B., & Colas, F. (2012). Equatorially forced intraseasonal propagations along the Peru–Chile coast and their relation with the nearshore eddy activity in 1992–2000: a modeling study. Journal of Geophysical Research, 117, C04025. https://doi.org/10.1029/2011JC007848.

    Article  Google Scholar 

  • Bertrand, A., Chaigneau, A., Peraltilla, S., Ledesma, J., Graco, M., Monetti, F., & Chavez, F. (2011). Oxygen: A fundamental property regulating pelagic ecosystem structure in the coastal southeastern tropical pacific, PLOS ONE, 6(12), e29558, https://doi.org/10.1371/journal.pone.0029558.

  • Bettencourt, J. H., López, C., Hernández-García, E., Montes, I., Sudre, J., Dewitte, B., Paulmier, A., & Garçon, V. (2015). Boundaries of the Peruvian Oxygen Minimum Zone shaped by coherent mesoscale dynamics, Nat. Geosci., 8, 937–940. https://doi.org/10.1038/ngeo2570.

  • Bouchón, M., & Peña, C., (2008). Impactos de los eventos La Niña en la pesquería peruana. Inf. Inst. Mar Perú. 35 (3): 193–198.

    Google Scholar 

  • Brochier, T., Auger, P.-A., Pecquerie, L., Machu, E., Capet, X., Thiaw, M., et al. (2018). Complex small pelagic fish population patterns arising from individual behavioral responses to their environment. Progress in Oceanography, 164, 12–27.

    Article  Google Scholar 

  • Brochier, T., Colas, F., Lett, C., Echevin, V., Cubillos, L. A., Tam, J., et al. (2009). Small pelagic fish reproductive strategies in upwelling systems: A natal homing evolutionary model to study environmental constraints. Progress in Oceanography, 83, 261–269.

    Article  Google Scholar 

  • Brochier, T., Echevin, V., Tam, J., Chaigneau, A., Goubanova, K., & Bertrand, A. (2013). Climate change scenarios experiments predict a future reduction in small pelagic fish recruitment in the Humboldt Current system. Global Change Biology, 19, 1841–1853.

    Article  Google Scholar 

  • Brochier, T., Lett, C., Tam, J., Freon, P., & Colas, F. (2008). An individual-based model study of anchovy early life history in the northern Humboldt Current system. Progress in Oceanography, 79, 313–325.

    Article  Google Scholar 

  • Carr, M. -E., Strub, P. T., Thomas, A. C., & Blanco J. L. (2002). Evolution of 1996–1999 La Niña and El Niño conditions off the western coast of South America: A remote sensing perspective, Journal of Geophysical Research, 107(C12), 3236. https://doi.org/10.1029/2001JC001183.

  • Carr, M. E. (2003). Simulation of carbon pathways in the planktonic ecosystem off Peru during the 1997–1998 El Niño and La Niña. Journal of Geophysical Research, 108(C12), 3380. https://doi.org/10.1029/1999JC000064.

    Article  CAS  Google Scholar 

  • Chamorro, A. (2018). Coastal winds dynamics in the Peruvian upwelling system under warming conditions: impact of El Niño and regional climate change. Sorbonne Université. https://tel.archives-ouvertes.fr/tel-02163945.

  • Chamorro, A., Echevin, V., Colas, F., Oerder, V., Tam, J., & Quispe-Ccalluari, C. (2018). Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997-1998 in the Peruvian upwelling system. Climate Dynamics, 1–17. https://doi.org/10.1007/s00382-018-4106-6.

  • Chavez, F. P., Ryan, J. P., Lluch-Cota, S., & Ñiquen, C. M. (2003). From anchovies to sardines and back-Multidecadal change in the Pacific Ocean. Science, 299, 217–221.

    Article  CAS  Google Scholar 

  • Chavez, F., & Messié, M. (2009). A comparison of Eastern Boundary Upwelling Ecosystems. Progress in Oceanography, 83, 80–96. https://doi.org/10.1016/j.pocean.2009.07.032.

  • Chiaverano, L. M., Robinson, K. L., Tam, J., Ruzicka, J. J., Quiñones, J., Aleksa, K. T., et al. (2018). Evaluating the role of large jellyfish and forage fishes as energy pathways, and their interplay with fisheries, in the Northern Humboldt. Current System Progress in Oceanography, 164, 28–36.

    Article  Google Scholar 

  • Christensen, V., & Pauly, D. (1992). ECOPATH II-A system for balancing steady state ecosystem models and calculating network characteristics. Ecological Modelling, 61(3–4), 169–185.

    Article  Google Scholar 

  • Christensen, V., & Walters, C. (2004). Ecopath with Ecosim: Methods, capabilities and limitations. Ecological Modelling, 172(2–4), 109–139.

    Article  Google Scholar 

  • Colas, F., Capet, X., McWilliams, J. C., & Li, Z. (2013). Mesoscale eddy buoyancy flux and eddy-induced circulation in eastern boundary currents. Journal of Physical Oceanography, 43, 1073–1095. https://doi.org/10.1175/JPO-D-11-0241.

    Article  Google Scholar 

  • Colas, F., Capet, X., McWilliams, J. C., & Shchepetkin, A. (2008). 1997–98 El Niño off Peru: A numerical study. Progress in Oceanography, 79, 138–155.

    Article  Google Scholar 

  • Dewitte, B., Vazquez-Cuervo, J., Goubanova, K., Illig, S., Takahashi, K., Cambon, G., et al. (2012). Change in El Niño flavours over 1958–2008: Implications for the long-term trend of the upwelling off Peru. Deep-Sea Research Part II, 77–80, 143–156. https://doi.org/10.1016/j.dsr2.2012.04.011.

    Article  Google Scholar 

  • Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929. https://doi.org/10.1126/science.1156401.

  • Echevin, V., Albert, A., Lévy, M., Aumont, O., Graco, M., & Garric, G. (2014). Remotely-forced intraseasonal variability of the Northern Humboldt Current System surface chlorophyll using a coupled physical-ecosystem model. Continental Shelf Research, 73, 14–30. https://doi.org/10.1016/j.csr.2013.11.015.

    Article  Google Scholar 

  • Echevin, V., Aumont, O., Ledesma, J., & Flores, G. (2008). The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: A model study. Progress in Oceanography, 79, 167–176.

    Article  Google Scholar 

  • Echevin, V., Colas, F., Chaigneau, A., & Penven, P. (2011). Sensitivity of the Northern Humboldt Current System nearshore modeled circulation to initial and boundary conditions. Journal of Geophysical Research, 116, C07002. https://doi.org/10.1029/2010JC006684.

    Article  Google Scholar 

  • Echevin, V., Gévaudan, M., Colas, F., Espinoza-Morriberon, D., Tam, J., Aumont, O., et al. (2019). Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system. Biogeosciences Discussions. https://doi.org/10.5194/bg-2020-4.

  • Echevin, V., Goubanova, K., Belmadani, A., & Dewitte, B. (2012). Sensitivity of the Humboldt Current system to global warming: A downscaling experiment of the IPSL-CM4 model. Climate Dynamics, 38, 761–774.

    Article  Google Scholar 

  • Enfield, D. B. (1981). Thermally driven wind variability in the planetary boundary layer above Lima, Peru. Journal of Geophysical Research, 86(C3), 2005–2016. https://doi.org/10.1029/JC086iCO3p02005.

    Article  Google Scholar 

  • Espinoza-Morriberon, D., Echevin, V., Colas, F., Tam, J., Ledesma, J., Graco, M., et al. (2017). Impact of the El Nino event on the productivity of the Peruvian Coastal Upwelling System. Journal of Geophysical Research: Oceans, 122(7), 5423–5444. https://doi.org/10.1002/2016JC012439.

    Article  Google Scholar 

  • Espinoza-Morriberon, D., Echevin, V., Romero, C. Y., Ledesma, J., Oliveros-Ramos, R., & Tam, J. (2016). Biogeochemical validation of an interannual simulation of the ROMS-PISCES coupled model in the Southeast Pacific. Revista Peruana de Biología, 23(2), 159–168. https://doi.org/10.15381/rpb.v23i2.12427.

    Article  Google Scholar 

  • Espinoza-Morriberón, D., Echevin, E., Colas, F., Tam, J., Gutierrez, D., Graco, M., et al. (2019).Oxygen variability during ENSO in the Tropical South Eastern Pacific. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2018.00526.

  • Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., et al. (2011). The Community Climate System Model version 4. Journal of Climate, 24, 4973–4991. https://doi.org/10.1175/2011JCLI4083.1.

    Article  Google Scholar 

  • Goubanova, K., Echevin, V., Dewitte, B., Codron, F., Takahashi, K., Terray, P., &Vrac, M. (2011). Statistical downscaling of sea-surface wind over the Peru–Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model. Climate Dynamics, 36(7–8), 1365–1378. https://doi.org/10.1007/s00382-010-0824-0

  • Graco, M., Ledesma, J., Flores, G.. & Girón, M. (2007). Nutrientes, oxígeno y procesos biogeoquímicos en el sistema de surgencias de la corriente de Humboldt frente a Perú. Revista Peruana de Biología, 14(1), 117–128.

    Google Scholar 

  • Graco, M., Purca, S., Dewitte, B., Morón, O., Ledesma, J., Flores, G., Castro, C., & Gutiérrez, D. (2017). The OMZ and nutrient features as a signature of interannual and low-frequency variability in the Peruvian upwelling system, Biogeosciences, 14, 4601–4617, https://doi.org/10.5194/bg-14-4601-2017.

  • Gruber, N., Frenzel, H., Doney, S. C., Marchesiello, P., McWilliams, J. C., Moisan, J. R., et al. (2006). Eddy resolving simulation of plankton ecosystem dynamics in the California Current System. Deep Sea Research, Part I, 53(9), 1483–1516.

    Article  Google Scholar 

  • Gutiérrez, D., Echevin, V., Tam, J., Takahashi, K., & Bertrand, A. (2014). Impacto del cambio climático sobre el mar peruano: tendencias actuales y futuras. In A. Grégoire (Ed.), El Perú frente al cambio climático. Resultado de investigaciones franco-peruanas (pp. 142–155). IRD.

    Google Scholar 

  • Gutknecht, E., Dadou, I., Le Vu, B., Cambon, G., Sudre, J., Garçon, V., et al. (2013). Coupled physical/biogeochemical modeling including O2-dependent processes in the Eastern Boundary Upwelling Systems: Application in the Benguela. Biogeosciences, 10, 3559–3591. https://doi.org/10.5194/bg-10-3559-2013.

    Article  CAS  Google Scholar 

  • Guenette, S., Christensen, V., Pauly, D. (2008). Trophic modelling of the Peruvian upwelling ecosystem: towards reconciliation of múltiple datasets. Progress in Oceanography 79, 352–365.

    Google Scholar 

  • Hernandez, O., Lehodey, P., Senina, I., Echevin, V., Ayón, P., Bertrand, A., et al. (2014). Understanding mechanisms that control fish spawning and larval recruitment: Parameter optimization of an Eulerian model (SEAPODYM-SP) with Peruvian anchovy and sardine eggs and larvae data. Progress in Oceanography, 123, 105–122.

    Article  Google Scholar 

  • Jahncke, J., Checkley, D. M., & Hunt, G. L. (2004). Trends in carbon flux to seabirds in the Peruvian upwelling system: Effects of wind and fisheries on population regulation. Fisheries Oceanography, 13, 208–223.

    Article  Google Scholar 

  • Jarre, A., Muck, P., & Pauly, D. (1991). Two approaches for modelling fish stock interactions in the Peruvian upwelling ecosystem. In: N. Daanand, & M. P. Sissenwine, (Eds.), Multispecies Models Relevant to Management of Living Resources. ICES Marine Science Symposium 193, (pp. 171–184).

    Google Scholar 

  • Jarre, A., & Pauly, D. (1993). Seasonal changes in the Peruvian upwelling ecosystem. In: V. Christensen, & D. Pauly, (Eds.), Trophic Models of Aquatic Ecosystems, ICLARM Conference Proceedings, vol. 26, (pp. 307–314).

    Google Scholar 

  • Jarre-Teichmann, A. (1998). The potential role of mass balance models for the management of upwelling ecosystems. Ecological Applications, 8, S93–S103.

    Article  Google Scholar 

  • Jarre-Teichmann, A., & Christensen, V. (1998). Comparative modelling of trophic flows in four large upwelling ecosystems: Global versus local effects. In M.-H. Durand, P. Cury, R. Mendelssohn, C. Roy, A. Bakun, & D. Pauly (Eds.), Global versus local changes in upwelling systems (pp. 423–443). Paris: ORSTOM.

    Google Scholar 

  • Jarre-Teichmann, A., Muck, P., & Pauly, D. (1989). Interactions between fish stocks in the Peruvian upwelling ecosystem. ICES 1989 MSM Symposium Paper 27, 24 p.

    Google Scholar 

  • Jarre-Teichmann, A., Shannon, L. J., Moloney, C. L., & Wickens, P. A. (1998). Comparing trophic flows in the Southern Benguela to those in other upwelling ecosystems. South African Journal of Marine Science, 19, 391–414.

    Article  Google Scholar 

  • Kessler, W. S. (2006). The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 69, 181–217.

    Article  Google Scholar 

  • Kone, V., Machu, E., Penven, P., Andersen, V., Garcon, V., Fréon, P., et al. (2005). Modeling the primary and secondary productions of the southern Benguela upwelling system: A comparative study through two biogeochemical models. Global Biogeochemical Cycles, 19, GB4021. https://doi.org/10.1029/2004GB002427.

    Article  CAS  Google Scholar 

  • Lett, C., Penven, P., Ayón, P., & Fréon, P. (2007). Enrichment, concentration and retention processes in relation to anchovy (Engraulis ringens) eggs and larvae distributions in the northern Humboldt upwelling ecosystem. Journal of Marine Systems, 64, 189–200.

    Article  Google Scholar 

  • Marzloff, M., Shin, Y.-J., Tam, J., Travers, M., & Bertrand, A. (2009). Trophic structure of the Peruvian marine ecosystem in 2000–2006: Insights on the effects of management scenarios for the hake fishery using the IBM trophic model Osmose. Journal of Marine Systems, 75, 290–304.

    Article  Google Scholar 

  • Messié, M., & Chávez, F. (2011). Global modes of sea surface temperature variability in relation to regional climate indices. Journal of Climate, 24, 4314–4331.

    Article  Google Scholar 

  • Mogollón, R., & Calil, P. H. R. (2017). On the effects of ENSO on ocean biogeochemistry in the Northern Humboldt Current System (NHCS): A modeling study. Journal of Marine Systems, 172, 137–159. https://doi.org/10.1016/j.jmarsys.2017.03.011.

    Article  Google Scholar 

  • Mogollón, R., & Calil, P. H. R. (2018a). Counterintuitive effects of global warming-induced wind patterns on primary production in the Northern Humboldt Current System. Global Change Biology, 1–12. https://doi.org/10.1111/gcb.14171.

  • Mogollón, R., & Calil, P. H. R. (2018b). Modelling the mechanisms and drivers of the spatiotemporal variability of pCO2 and air–sea CO2 fluxes in the Northern Humboldt Current System. Ocean Modelling, 132, 61–72. https://doi.org/10.1016/j.ocemod.2018.10.005.

    Article  Google Scholar 

  • Moloney, C. L., Jarre, A., Arancibia, H., Bozec, Y.-M., Neira, S., Jean-Paul Roux, J.-P., et al. (2005). Comparing the Benguela and Humboldt marine upwelling ecosystems with indicators derived from inter-calibrated models. ICES Journal of Marine Science, 62, 493–502.

    Article  Google Scholar 

  • Montes, I., Colas, F., Capet, X., & Schneider, W. (2010). On the pathways of the equatorial subsurface currents in the eastern equatorial Pacific and their contributions to the Peru-Chile Undercurrent. Journal of Geophysical Research, Oceans, 115, C09003. https://doi.org/10.1029/2009JC005710.

    Article  Google Scholar 

  • Montes, I., Dewitte, B., Gutknecht, E., Paulmier, A., Dadou, I., Oschlies, A., et al. (2014). High resolution modeling of the Eastern Tropical Pacific oxygen minimum zone: Sensitivity to the tropical oceanic circulation. Journal of Geophysical Research, Oceans, 119(8), 5515–5532. https://doi.org/10.1002/2014JC009858.

    Article  CAS  Google Scholar 

  • Montes, I., Wolfgang, S., Colas, F., Blanke, B., & Echevin, V. (2011). Subsurface connections in the eastern tropical Pacific during La Niña 1999–2001 and El Niño 2002–2003. Journal of Geophysical Research, 116, C12022. https://doi.org/10.1029/2011JC007624.

    Article  Google Scholar 

  • Moore, J. K., Doney, S. C., & Lindsay, K. (2004). Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochemical Cycles, 18, GB4028. https://doi.org/10.1029/2004GB002220.

    Article  CAS  Google Scholar 

  • Muñoz, R. C., & Garreaud, R. D. (2005). Dynamics of the low-level jet off the west coast of subtropical South America. Monthly Weather Review, 133, 3661–3677. https://doi.org/10.1175/MWR3074.1.

    Article  Google Scholar 

  • Ñiquen, M., & M. Bouchón (2004). Impact of El Niño event on pelagic fisheries in Peruvian waters, Deep Sea Res. Part II, 51, 563–574. https://doi.org/10.1016/j.dsr2.2004.03.001.

  • Oerder, V., Colas, F., Echevin, V., Codron, F., Tam, J., & Belmadani, A. (2015). Peru-Chile upwelling dynamics under climate change. Journal of Geophysical Research, Oceans, 120, 1152–1172. https://doi.org/10.1002/2014JC010299.

    Article  Google Scholar 

  • Oliveros-Ramos, R., Verley, P., Echevin, V., & Shin, Y.-J. (2017). A sequential approach to calibrate ecosystem models with multiple time series data. Progress in Oceanography, 151, 227–244.

    Article  Google Scholar 

  • Oozeki, Y., Niquen, M., Takasuka, A., Ayon, P., Kuroda, H., Tam, J., et al. (2019). Synchronous multi-species alternations between the northern Humboldt and Kuroshio Current systems. Deep-Sea Research Part II, 159, 11–21.

    Article  Google Scholar 

  • Penven, P., Echevin, V., Pasapera, J., Colas, F., & Tam, J. (2005). Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. Journal of Geophysical Research, 110, C10021. https://doi.org/10.1029/2005JC002945.

    Article  Google Scholar 

  • Resplandy, L., Levy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S., et al. (2012). Controlling factors of the oxygen balance in the Arabian Sea’s OMZ. Biogeosciences, 9, 5095–5109. https://doi.org/10.5194/bg-9-5095-2012.

    Article  CAS  Google Scholar 

  • Salvatteci, R., Field, D., Gutiérrez, D., Baumgartner, T., Ferreira, V., Ortlieb, L., et al. (2018). Multifarious anchovy and sardine regimes in the Humboldt Current System during the last 150 years. Global Change Biology, 24(3), 1055–1068.

    Article  Google Scholar 

  • Shchepetkin, A. F., & McWilliams, J. C. (1998). Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Monthly Weather Review, 126, 1541–1580.

    Article  Google Scholar 

  • Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system: A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modelling, 9, 347–404.

    Article  Google Scholar 

  • Smith, A. D. M., Brown, C. J., Bulman, C. M., Fulton, E. A., Johnson, P., Kaplan, I. C., Lozano-Montes, H., Mackinson, S., Marzloff, M., Shannon, L. J., Shin, Y. J., & Tam, J. (2011). Impacts of fishing low-trophic level species on marine ecosystems. Science 333, 1147–1150. https://doi.org/10.1126/science.1209395.

  • Tam, J., Blaskovic, V., Goya, E., Bouchon, M., Taylor, M., Oliveros-Ramos, R., et al. (2010). Relación entre Anchovy y otros componentes del ecosistema. Bol. Inst. Mar Perú., 25, 31–37.

    Google Scholar 

  • Tam, J., Jarre, A., Taylor, M., Wosnitza-Mendo, C., Blaskovic, V., Vargas, N., et al. (2009). Modelado de la merluza en su ecosistema con interacciones tróficas y forzantes ambientales. Bol. Inst. Mar Perú., 24, 27–32.

    Google Scholar 

  • Tam, J., Taylor, M. H., Blaskovic, V., Espinoza, P., Ballón, R. M., Díaz, E., et al. (2008). Trophic modeling of the Northern Humboldt Current Ecosystem, part I: comparing trophic trophic linkages under La Niña and El Niño conditions. Progress in Oceanography, 79, 352–365.

    Article  Google Scholar 

  • Tarazona, J., & Arntz, W. (2001). The Peruvian Coastal Upwelling System. Coastal Marine Ecosystems of Latin America, 144, 229–244. https://doi.org/10.1007/978-3-662-04482-7_17.

  • Taylor, M. H., Tam, J., Blaskovic, V., Espinoza, P., Ballón, R. M., Wosnitza-Mendo, C., et al. (2008). Trophic modeling of the Northern Humboldt Current Ecosystem, Part II: Elucidating ecosystem dynamics from 1995 to 2004 with a focus on the impact of ENSO. Progress in Oceanography, 79, 366–378.

    Article  Google Scholar 

  • Thomas, A. C., Carr M. E., & Strub, P. T. (2001). Chlorophyll variability in eastern boundary currents, Geophys. Research Letters, 28(18), 3421–3424. https://doi.org/10.1029/2001GL013368.

  • Tovar, H., & Cabrera, D. (1985). Las aves guaneras y el fenómeno “El Niño”, in El fenómeno “El Niño” y su impacto en la fauna marina. W. F. Arntz, A. Landa, & J. Tarazona, Bol. Inst. Mar Perú, extraordinary volume, (pp. 181–186).

    Google Scholar 

  • Trasmonte, G., & Silva, Y. (2008). Evento La Niña: Propuesta de definición y clasificación según las anomalías de temperatura de la superficie del mar en el área Niño 1+2, Informe Instituto del Mar del Perú 35(3), 199–207.

    Google Scholar 

  • Vergara, O., Dewitte, B., Montes, I., Garçon, V., Ramos, M., Paulmier, A., & Pizarro, O. (2016). Seasonal variability of the oxygen minimum zone off Peru in a high-resolution regional coupled model, Biogeosciences, 13, 4389–4410. https://doi.org/10.5194/bg-13-4389-2016

  • Walsh, J., & Dugdale, J. (1971). A simulation model of the nitrogen flow in the Peruvian upwelling system. Investigacion Pesquera, 35, 309–330.

    CAS  Google Scholar 

  • Walsh, J. J. (1981). A carbon budget for overfishing off Peru. Nature, 290, 300–304.

    Article  Google Scholar 

  • Xu, Y., Chai, F., Rose, K. A., Niquen, M., & Chavez, F. P. (2013). Environmental influences on the interannual variation and spatial distribution of Peruvian anchovy (Engraulis ringens) population dynamics from 1991 to 2007: A three-dimensional modeling study. Ecological Modelling, 264, 64–82.

    Article  Google Scholar 

  • Yang, S., Gruber, N., Long, M. C., & Vogt, M. (2017). ENSO driven variability of denitrification and suboxia in the Eastern Tropical Pacific Ocean. Global Biogeochemical Cycles, 31, 1470–1487. https://doi.org/10.1002/2016GB005596.

    Article  CAS  Google Scholar 

  • Yonss, J. S., Dietze, H., & Oschlies, A. (2017). Linking diverse nutrient patterns to different water masses within anticyclonic eddies in the upwelling system off Peru. Biogeosciences, 14, 1349–1364. https://doi.org/10.5194/bg-14-1349-2017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank our partners during the implementation of several models for the NHCE in the LMOECC: Pierrick Penven, Vincent Echevin, and Francois Colas during the implementation of WRF and ROMS-PISCES models; Marc Taylor, Matthias Wolff, and Moritz Stäbler during the implementation of EwE; Timothée Brochier and Jorge Flores during the implementation of Ichthyop model; Martin Marzloff and Ricardo Oliveros during the implementation of OSMOSE model; Arturo Aguirre, Laure Pecquerie, and Takeshi Okunishi for the on-going support in the implementation of bioenergetic models. We also acknowledge the support of IRD and IADB for donating High Performance Computing Clusters to IMARPE, which allowed to run several ecosystem submodels for the NHCE. Finally, special thanks to the LMOECC staff (Cinthia Arellano, Carlos Quispe, Yván Romero, and Jorge Ramos) as well as the observational staff from IMARPE which was crucial to validate and interpret the model outputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Tam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tam, J., Chamorro, A., Espinoza-Morriberón, D. (2021). Modelling the Northern Humboldt Current Ecosystem: From Winds to Predators. In: Ortiz, M., Jordán, F. (eds) Marine Coastal Ecosystems Modelling and Conservation. Springer, Cham. https://doi.org/10.1007/978-3-030-58211-1_3

Download citation

Publish with us

Policies and ethics