Skip to main content

Weakly Supervised 3D Hand Pose Estimation via Biomechanical Constraints

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12362))

Included in the following conference series:

Abstract

Estimating 3D hand pose from 2D images is a difficult, inverse problem due to the inherent scale and depth ambiguities. Current state-of-the-art methods train fully supervised deep neural networks with 3D ground-truth data. However, acquiring 3D annotations is expensive, typically requiring calibrated multi-view setups or labour intensive manual annotations. While annotations of 2D keypoints are much easier to obtain, how to efficiently leverage such weakly-supervised data to improve the task of 3D hand pose prediction remains an important open question. The key difficulty stems from the fact that direct application of additional 2D supervision mostly benefits the 2D proxy objective but does little to alleviate the depth and scale ambiguities. Embracing this challenge we propose a set of novel losses that constrain the prediction of a neural network to lie within the range of biomechanically feasible 3D hand configurations. We show by extensive experiments that our proposed constraints significantly reduce the depth ambiguity and allow the network to more effectively leverage additional 2D annotated images. For example, on the challenging freiHAND dataset, using additional 2D annotation without our proposed biomechanical constraints reduces the depth error by only \(15\%\), whereas the error is reduced significantly by \(50\%\) when the proposed biomechanical constraints are used.

A. Spurr—This work was done during an internship at NVIDIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, I., Haber, J., Seidel, H.P.: Construction and animation of anatomically based human hand models. In: SIGGRAPH (2003)

    Google Scholar 

  2. Aristidou, A.: Hand tracking with physiological constraints. Vis. Comput. 34(2), 213–228 (2018). https://doi.org/10.1007/s00371-016-1327-8

    Article  Google Scholar 

  3. Armagan, A., et al.: Measuring generalisation to unseen viewpoints, articulations, shapes and objects for 3D hand pose estimation under hand-object interaction. In: ECCV (2020)

    Google Scholar 

  4. Baek, S., Kim, K.I., Kim, T.K.: Pushing the envelope for RGB-based dense 3D hand pose estimation via neural rendering. In: CVPR (2019)

    Google Scholar 

  5. Boukhayma, A., de Bem, R., Torr, P.H.: 3D hand shape and pose from images in the wild. In: CVPR (2019)

    Google Scholar 

  6. Cai, Y., Ge, L., Cai, J., Yuan, J.: Weakly-supervised 3D hand pose estimation from monocular RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 678–694. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_41

    Chapter  Google Scholar 

  7. Cai, Y., et al.: Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks. In: CVPR (2019)

    Google Scholar 

  8. Cerveri, P., De Momi, E., Lopomo, N., Baud-Bovy, G., Barros, R., Ferrigno, G.: Finger kinematic modeling and real-time hand motion estimation. Ann. Biomed. Eng. 35(11), 1989–2002 (2007). https://doi.org/10.1007/s10439-007-9364-0

    Article  Google Scholar 

  9. Chen Chen, F., Appendino, S., Battezzato, A., Favetto, A., Mousavi, M., Pescarmona, F.: Constraint study for a hand exoskeleton: human hand kinematics and dynamics. J. Robot. (2013)

    Google Scholar 

  10. Cobos, S., Ferre, M., Uran, M.S., Ortego, J., Pena, C.: Efficient human hand kinematics for manipulation tasks. In: IROS (2008)

    Google Scholar 

  11. Cordella, F., Zollo, L., Guglielmelli, E., Siciliano, B.: A bio-inspired grasp optimization algorithm for an anthropomorphic robotic hand. Int. J. Interact. Des. Manuf. 6(2), 113–122 (2012). https://doi.org/10.1007/s12008-012-0149-9

    Article  Google Scholar 

  12. Dibra, E., Wolf, T., Oztireli, C., Gross, M.: How to refine 3D hand pose estimation from unlabelled depth data? In: 3DV (2017)

    Google Scholar 

  13. Ge, L., et al.: 3D hand shape and pose estimation from a single RGB image. In: CVPR (2019)

    Google Scholar 

  14. Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: HOnnotate: a method for 3D annotation of hand and object poses. In: CVPR (2020)

    Google Scholar 

  15. Hasson, Y.,et al.: Learning joint reconstruction of hands and manipulated objects. In: CVPR (2019)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  17. Heap, T., Hogg, D.: Towards 3D hand tracking using a deformable model. In: FG (1996)

    Google Scholar 

  18. Iqbal, U., Molchanov, P., Breuel, T., Gall, J., Kautz, J.: Hand pose estimation via latent 2.5D heatmap regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 125–143. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_8

    Chapter  Google Scholar 

  19. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR (2018)

    Google Scholar 

  20. Kuch, J.J., Huang, T.S.: Vision based hand modeling and tracking for virtual teleconferencing and telecollaboration. In: CVPR (1995)

    Google Scholar 

  21. Kulon, D., Wang, H., Güler, R.A., Bronstein, M., Zafeiriou, S.: Single image 3D hand reconstruction with mesh convolutions. In: BMVC (2019)

    Google Scholar 

  22. Lee, J., Kunii, T.L.: Model-based analysis of hand posture. IEEE Comput. Graph. Appl. 15(5), 77–86 (1995)

    Article  Google Scholar 

  23. Lin, J., Wu, Y., Huang, T.S.: Modeling the constraints of human hand motion. In: IEEE Workshop on Human Motion (2000)

    Google Scholar 

  24. Melax, S., Keselman, L., Orsten, S.: Dynamics based 3D skeletal hand tracking. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2013)

    Google Scholar 

  25. Mueller, F., et al.: GANerated hands for real-time 3D hand tracking from monocular RGB. In: CVPR (2018)

    Google Scholar 

  26. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Full DOF tracking of a hand interacting with an object by modeling occlusions and physical constraints. In: ICCV (2011)

    Google Scholar 

  27. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3D tracking of hand articulations using kinect. In: BMVC (2011)

    Google Scholar 

  28. Panteleris, P., Oikonomidis, I., Argyros, A.: Using a single RGB frame for real time 3D hand pose estimation in the wild. In: WACV (2017)

    Google Scholar 

  29. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR (2019)

    Google Scholar 

  30. Reed, N.: What is the simplest way to compute principal curvature for a mesh triangle? (2019). https://computergraphics.stackexchange.com/questions/1718/what-is-the-simplest-way-to-compute-principal-curvature-for-a-mesh-triangle

  31. Rhee, T., Neumann, U., Lewis, J.P.: Human hand modeling from surface anatomy. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2006)

    Google Scholar 

  32. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. In: SIGGRAPH-Asia (2017)

    Google Scholar 

  33. Ryf, C., Weymann, A.: The neutral zero method–a principle of measuring joint function. Injury 26, 1–11 (1995)

    Article  Google Scholar 

  34. Spurr, A., Song, J., Park, S., Hilliges, O.: Cross-modal deep variational hand pose estimation. In: CVPR (2018)

    Google Scholar 

  35. Sridhar, S., Mueller, F., Zollhöfer, M., Casas, D., Oulasvirta, A., Theobalt, C.: Real-time joint tracking of a hand manipulating an object from RGB-D input. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 294–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_19

    Chapter  Google Scholar 

  36. Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand motion tracking using RGB and depth data. In: ICCV (2013)

    Google Scholar 

  37. Sun, X., Shang, J., Liang, S., Wei, Y.: Compositional human pose regression. In: ICCV (2017)

    Google Scholar 

  38. Tekin, B., Bogo, F., Pollefeys, M.: H+o: unified egocentric recognition of 3D hand-object poses and interactions. In: CVPR (2019)

    Google Scholar 

  39. Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Graph. (ToG) 33(5), 1–10 (2014)

    Article  Google Scholar 

  40. Wan, C., Probst, T., Gool, L.V., Yao, A.: Self-supervised 3D hand pose estimation through training by fitting. In: CVPR (2019)

    Google Scholar 

  41. Wu, Y., Huang, T.S.: Capturing articulated human hand motion: a divide-and-conquer approach. In: ICCV (1999)

    Google Scholar 

  42. Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: posing face, body, and hands in the wild. In: CVPR (2019)

    Google Scholar 

  43. Xu, C., Cheng, L.: Efficient hand pose estimation from a single depth image. In: ICCV (2013)

    Google Scholar 

  44. Yang, L., Yao, A.: Disentangling latent hands for image synthesis and pose estimation. In: CVPR (2019)

    Google Scholar 

  45. Zhang, J., Jiao, J., Chen, M., Qu, L., Xu, X., Yang, Q.: 3D hand pose tracking and estimation using stereo matching. arXiv:1610.07214 (2016)

  46. Zhang, X., Li, Q., Mo, H., Zhang, W., Zheng, W.: End-to-end hand mesh recovery from a monocular RGB image. In: ICCV (2019)

    Google Scholar 

  47. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: ICCV (2017)

    Google Scholar 

  48. Zimmermann, C., Brox, T.: Learning to estimate 3D hand pose from single RGB images. In: ICCV (2017)

    Google Scholar 

  49. Zimmermann, C., Ceylan, D., Yang, J., Russell, B., Argus, M., Brox, T.: FreiHAND: a dataset for markerless capture of hand pose and shape from single RGB images. In: ICCV (2019)

    Google Scholar 

Download references

Acknowledgments

We are grateful to Christoph Gebhardt and Shoaib Ahmed Siddiqui for the aid in figure creation and Abhishek Badki for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Spurr .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1284 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spurr, A., Iqbal, U., Molchanov, P., Hilliges, O., Kautz, J. (2020). Weakly Supervised 3D Hand Pose Estimation via Biomechanical Constraints. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12362. Springer, Cham. https://doi.org/10.1007/978-3-030-58520-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58520-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58519-8

  • Online ISBN: 978-3-030-58520-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics