Skip to main content

A Mathematica Package for Plotting Implicitly Defined Hypersurfaces in

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Plotting implicitly defined geometric objects is a very important topic on computer graphics, computer aided design and geometry processing. In fact, the most important computer algebra systems include sophisticated tools for plotting implicitly defined curves and surfaces. This paper describes a new Mathematica package, 4DPlots, for plotting implicitly defined hypersurfaces (solids) in using a generalization of the bisection method that is applied to continuous functions of four variables by recursive bisection of segments contained in their domain. The output obtained is consistent with Mathematica’s notation and results. The performance of the package is discussed by means of several illustrative and interesting examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anto, L.A.: Aproximación de los ceros de funciones continuas de varias variables reales y valor real mediante el método de bisección con el Mathematica. Universidad Nacional de Piura (2019). http://repositorio.unp.edu.pe/handle/UNP/18923

  2. Agoston, M.K.: Computer Graphics and Geometric Modeling, Implementation and Algorithms. Springer, London (2005). https://doi.org/10.1007/b138805

    Book  MATH  Google Scholar 

  3. Bachrathy, D., Stépán, G.: Bisection method in higher dimensions and the efficiency number. Periodica polytechnica 56, 81–86 (2012)

    Article  Google Scholar 

  4. Barnhill, R.E.: Geometry processing: curvature analysis and surface-surface intersection. In: Mathematical Methods in Computer Aided Geometric Design, pp. 51–60 (1989)

    Google Scholar 

  5. Barnhill, R.E.: Geometry Processing for Design and Manufacturing. Society for Industrial and Applied Mathematics (1992)

    Google Scholar 

  6. Bærentzen, J., et al.: Guide to Computational Geometry Processing, Foundations, Algorithms, and Methods. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4075-7

    Book  MATH  Google Scholar 

  7. Bi, Z., Wang, X.: Computer Aided Design and Manufacturing. Wiley, Hoboken (2020)

    Book  Google Scholar 

  8. Botsch, M., et al.: Polygon Mesh Processing. A K Peters, Ltd., Natick (2010)

    Book  Google Scholar 

  9. Bloomenthal, J., et al.: Introduction to Implicit Surfaces. Elsevier, Amsterdam (1997)

    MATH  Google Scholar 

  10. Burden, R., et al.: Numerical Analysis, 10th edn. Cengage Learning, Boston (2015)

    Google Scholar 

  11. CalcPlot3D Homepage. https://www.monroecc.edu/faculty/paulseeburger/calcnsf/CalcPlot3D/. Accessed 18 Apr 2020

  12. Fiestas, A.M.: Aproximación de ceros de funciones continuas de dos variables complejas y valor complejo mediante el método de bisección. Universidad Nacional de Piura (2019). http://repositorio.unp.edu.pe/handle/UNP/1963

  13. Garvan, F.: The Maple Book. Chapman & Hall/CRC (2002)

    Google Scholar 

  14. Gomes, A.J.P.: Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms. Springer, London (2009)

    Book  Google Scholar 

  15. Hartmann, E.: Geometry and Algorithms for Computer Aided Design. Darmstadt University of Technology (2003)

    Google Scholar 

  16. Implicit 3D Plot Homepage. http://matkcy.github.io/MA1104-implicitplot.html. Accessed 18 Apr 2020

  17. Ipanaqué, R.: Breve manual de Maxima. Eumed.net (2010)

    Google Scholar 

  18. López, M.: The multivariate bisection algorithm. ARXIV, 1–19 (2018)

    Google Scholar 

  19. Maeder, R.: Programming in Mathematica, 2nd edn. Addison-Wesley, Redwood City (1991)

    MATH  Google Scholar 

  20. Martin, C., Rayskin, V.: An improved bisection method in two dimensions. Preprint submitted to Elsevier, pp. 1–21 (2016)

    Google Scholar 

  21. Morozova, E.: A multidimensional bisection method. In: Proceedings of the Fourteenth Symposium on Computing: The Australasian Theory, pp. 57–62. Australian Computer Society (1989)

    Google Scholar 

  22. Multi-Dimensional Bisection Method Homepage. https://www.mm.bme.hu/~bachrathy/research_EN.html#MDBM. Accessed 18 Apr 2020

  23. Parekh, R.: Fundamentals of Graphics Using MatLab. CRC Press (2019)

    Google Scholar 

  24. Patrikalakis, N., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-04074-0

    Book  MATH  Google Scholar 

  25. Plantinga, S.: Certified Algorithms for Implicit Surfaces (2007)

    Google Scholar 

  26. Sarcar, M.M.M., et al.: Computer Aided Design and Manufacturing. PHI Learning Pvt., Ltd. (2008)

    Google Scholar 

  27. Shirley, P.: Fundamentals of Computer Graphics, 3rd edn. Taylor & Francis Group (2009)

    Google Scholar 

  28. Sultanow, E.: Implizite Flächen. Mathematical Methods in Computer Aided Geometric Design, pp. 1–11

    Google Scholar 

  29. Velezmoro, R., Ipanaqué, R., Mechato, J.A.: A mathematica package for visualizing objects inmersed in \(\mathbb{R}^{4}\). In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 479–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_35

    Chapter  Google Scholar 

  30. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media Inc. (2003)

    Google Scholar 

  31. Zimmermann, P., et al.: Computational Mathematics with SageMath, 1st edn. SIAM- Society for Industrial and Applied Mathematics (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the authorities of the Universidad Nacional de Piura for the acquisition of the Mathematica 11.0 license and the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ipanaqué .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anto, L.A., Fiestas, A.M., Ojeda, E.J., Velezmoro, R., Ipanaqué, R. (2020). A Mathematica Package for Plotting Implicitly Defined Hypersurfaces in . In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics