Skip to main content

Forecasting Time Series with Multiplicative Trend Exponential Smoothing and LSTM: COVID-19 Case Study

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2 (FTC 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1289))

Included in the following conference series:

Abstract

In this work, we present an analysis of time series of COVID-19 confirmed cases with Multiplicative Trend Exponential Smoothing (MTES) and Long Short-Term Memory (LSTM). We evaluated the results utilizing COVID-19 confirmed cases data from countries with higher indices as the United States (US), Italy, Spain, and other countries that presumably have stopped the virus, like China, New Zealand, and Australia. Additionally, we used data from a Git repository which is daily updated, when we did the experiments we used data up to April 28th. We used 80% of data to train both models and then, we computed the Root Mean Square Error (RMSE) of test ground true data and predictions. In our experiments, MTES outperformed LSTM, we believe it is caused by a lack of historical data and the particular behavior of each country. To conclude, we performed a forecasting of new COVID-19 confirmed cases using MTES with 10 days ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdurrahman, M., Irawan, B., Latuconsina, R.: Flood forecasting using holt-winters exponential smoothing method and geographic information system. In: 2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC), pp. 159–163. IEEE (2017)

    Google Scholar 

  2. Al-Qaness, M.A., Ewees, A.A., Fan, H., Abd El Aziz, M.: Optimization method for forecasting confirmed cases of COVID-19 in China. J. Clin. Med. 9(3), 674 (2020)

    Article  Google Scholar 

  3. Anastassopoulou, C., Russo, L., Tsakris, A., Siettos, C.: Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS ONE 15(3), e0230405 (2020)

    Article  Google Scholar 

  4. Baek, Y., Kim, H.Y.: Modaugnet: a new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Syst. Appl. 113, 457–480 (2018)

    Article  Google Scholar 

  5. Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE 12(7), e0180944 (2017)

    Article  Google Scholar 

  6. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, Cham (2016)

    Book  Google Scholar 

  7. Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on CEEMDAN and LSTM. Phys. A 519, 127–139 (2019)

    Article  Google Scholar 

  8. Chakraborty, T., Chattopadhyay, S., Ghosh, I.: Forecasting dengue epidemics using a hybrid methodology. Phys. A 527, 121266 (2019)

    Article  Google Scholar 

  9. Connor, S.J., Mantilla, G.C.: Integration of seasonal forecasts into early warning systems for climate-sensitive diseases such as malaria and dengue. In: Seasonal Forecasts, Climatic Change and Human Health, pp. 71–84. Springer, Dordrecht (2008)

    Google Scholar 

  10. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Multi-scale internet traffic forecasting using neural networks and time series methods. Expert Syst. 29(2), 143–155 (2012)

    Google Scholar 

  11. IHME COVID, Murray, C.J.L., et al.: Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by us state in the next 4 months. medRxiv (2020)

    Google Scholar 

  12. Cui, Z., Ke, R., Pu, Z., Wang, Y.: Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction. arXiv preprint arXiv:1801.02143 (2018)

  13. Fanelli, D., Piazza, F.: Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals 134, 109761 (2020)

    Article  MathSciNet  Google Scholar 

  14. Fu, R., Zhang, Z., Li, L.: Using LSTM and GRU neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328. IEEE (2016)

    Google Scholar 

  15. Google. Google news COVID-19. https://news.google.com/covid19/map?hl=en-US&gl=US&ceid=US:en. Accessed 28 Apr 2020

  16. Grubb, H., Mason, A.: Long lead-time forecasting of UK air passengers by holt-winters methods with damped trend. Int. J. Forecast. 17(1), 71–82 (2001)

    Article  Google Scholar 

  17. Hanke, J.E., Wichern, D.W.: Pronosticos en los negocios. Technical report (2006)

    Google Scholar 

  18. Hasan, I., Setti, F., Tsesmelis, T., Del Bue, A., Galasso, F., Cristani, M.: MX-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6067–6076 (2018)

    Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  20. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages. ONR Research Memorandum, 52 (1957)

    Google Scholar 

  21. Holt, C.C.: Forecasting trends and seasonals by exponentially weighted averages. Carnegie institute of technology. Technical report, Pittsburgh ONR memorandum (1957)

    Google Scholar 

  22. Hu, Z., Ge, Q., Jin, L., Xiong, M.: Artificial intelligence forecasting of COVID-19 in China. arXiv preprint, arXiv:2002.07112 (2020)

  23. Hussain, A., Rahman, M., Memon, J.A.: Forecasting electricity consumption in Pakistan: the way forward. Energy Policy 90, 73–80 (2016)

    Article  Google Scholar 

  24. Jiang, Q., Tang, C., Chen, C., Wang, X., Huang, Q.: Stock price forecast based on LSTM neural network. In: International Conference on Management Science and Engineering Management, pp. 393–408. Springer, Heidelberg (2018)

    Google Scholar 

  25. Kim, H.Y., Won, C.H.: Forecasting the volatility of stock price index: a hybrid model integrating LSTM with multiple GARCH-type models. Expert Syst. Appl. 103, 25–37 (2018)

    Article  Google Scholar 

  26. Kim, T., Kim, H.Y.: Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. PLoS ONE 14(2), e0212320 (2019)

    Article  Google Scholar 

  27. Koo, B.-G., Kim, M.-S., Kim, K.-H., Lee, H.-T., Park, J.-H., Kim, C.-H.: Short-term electric load forecasting using data mining technique. In: 2013 7th International Conference on Intelligent Systems and Control (ISCO), pp. 153–157. IEEE (2013)

    Google Scholar 

  28. SUTD Data-Driven Innovation Lab. When will COVID-19 end. https://ddi.sutd.edu.sg/when-will-covid-19-end/. Accessed 04 Apr 2020

  29. Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E., Winkler, R.: The accuracy of extrapolation (time series) methods: results of a forecasting competition. J. Forecast. 1(2), 111–153 (1982)

    Article  Google Scholar 

  30. Miller, M.: 2019 novel coronavirus COVID-19 (2019-nCoV) data repository. Bulletin-Association of Canadian Map Libraries and Archives (ACMLA), no. 164, pp. 47–51 (2020)

    Google Scholar 

  31. Mussumeci, E., Coelho, F.C.: Machine-learning forecasting for dengue epidemics-comparing LSTM, random forest and lasso regression. medRxiv (2020)

    Google Scholar 

  32. Newton, H.J., Parzen, E.: Forecasting and time series model types of 111 economic time series. Technical report, Texas A&M Univ College Station Inst of Statistics (1983)

    Google Scholar 

  33. Pegels, C.C.: Exponential forecasting: some new variations. Manag. Sci. 15, 311–315 (1969)

    Article  Google Scholar 

  34. Petropoulos, F., Kourentzes, N., Nikolopoulos, K., Siemsen, E.: Judgmental selection of forecasting models. J. Oper. Manag. 60, 34–46 (2018)

    Article  Google Scholar 

  35. Petropoulos, F., Makridakis, S.: Forecasting the novel coronavirus COVID-19. PLoS ONE 15(3), e0231236 (2020)

    Article  Google Scholar 

  36. Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J.M., Yan, P., Chowell, G.: Real-time forecasts of the COVID-19 epidemic in china from February 5th to February 24th, 2020. Infect. Disease Model. 5, 256–263 (2020)

    Article  Google Scholar 

  37. Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J.M., Yan, P., Chowell, G.: Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. J. Clin. Med. 9(2), 596 (2020)

    Google Scholar 

  38. Selvin, S., Vinayakumar, R., Gopalakrishnan, E.A., Menon, V.K., Soman, K.P.: Stock price prediction using LSTM, RNN and CNN-sliding window model. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1643–1647. IEEE (2017)

    Google Scholar 

  39. Shao, X., Ma, D., Liu, Y., Yin, Q.: Short-term forecast of stock price of multi-branch LSTM based on k-means. In: 2017 4th International Conference on Systems and Informatics (ICSAI), pp. 1546–1551. IEEE (2017)

    Google Scholar 

  40. Siami-Namini, S., Namin, A.S.: Forecasting economics and financial time series: ARIMA vs. LSTM. arXiv preprint, arXiv:1803.06386 (2018)

  41. Taylor, J.W.: Exponential smoothing with a damped multiplicative trend. Int. J. Forecast. 19(4), 715–725 (2003)

    Article  Google Scholar 

  42. Taylor, J.W.: Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 54(8), 799–805 (2003)

    Article  Google Scholar 

  43. Tian, Y., Zhang, K., Li, J., Lin, X., Yang, B.: LSTM-based traffic flow prediction with missing data. Neurocomputing 318, 297–305 (2018)

    Article  Google Scholar 

  44. Verma, A.K., Kuppili, V.: Data-oriented neural time series with long short-term memories (LSTM) for malaria incidence prediction in Goa, India. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. IEEE (2019)

    Google Scholar 

  45. Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Manag. Sci. 6(3), 324–342 (1960)

    Article  MathSciNet  Google Scholar 

  46. Wu, Y., Tan, H.: Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint, arXiv:1612.01022 (2016)

  47. Yan, H., Ouyang, H.: Financial time series prediction based on deep learning. Wireless Pers. Commun. 102(2), 683–700 (2018)

    Article  Google Scholar 

  48. Zhao, Z., Chen, W., Wu, X., Chen, P.C., Liu, J.: LSTM network: a deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 11(2), 68–75 (2017)

    Article  Google Scholar 

  49. Zhuge, Q., Xu, L., Zhang, G.: LSTM neural network with emotional analysis for prediction of stock price. Eng. Lett. 25(2), 167–175 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Machaca Arceda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arceda, M.A.M., Laura, P.C.L., Arceda, V.E.M. (2021). Forecasting Time Series with Multiplicative Trend Exponential Smoothing and LSTM: COVID-19 Case Study. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2 . FTC 2020. Advances in Intelligent Systems and Computing, vol 1289. Springer, Cham. https://doi.org/10.1007/978-3-030-63089-8_36

Download citation

Publish with us

Policies and ethics