Skip to main content

Inflammatory Bases of Neuropsychiatric Symptom Domains: Mechanisms and Specificity

  • Chapter
  • First Online:
Immuno-Psychiatry

Abstract

A large database documents the role of inflammatory processes in the development of neuropsychiatric symptom dimensions that are common to multiple psychiatric conditions. Mechanisms mediating this effect are believed to involve disturbances in monoamine and glutamate metabolism and function, through the action of inflammatory factors on two distinct enzymatic pathways, including the indoleamine-2,3-dioxygenase (IDO) and GTP-cyclohydrolase I (GCH-I) pathways. Alterations in these pathways contribute to profound structural and functional brain abnormalities associated with specific symptom dimensions. Increasing knowledge on immune-to-brain interactions is expected to facilitate the development and implementation of novel and innovative therapeutic interventions against inflammation targeting, at distinct levels of integration, mechanisms, processes, and brain circuits underlying the expression of specific clinical profiles. These strategies are crucial for a precision medicine in Psychiatry, tailored to the clinical and biological phenotypes of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V, et al. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980-2013. Int J Epidemiol. 2014;43(2):476–93.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet. 2013;382(9904):1575–86.

    Article  PubMed  Google Scholar 

  3. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789–858.

    Article  Google Scholar 

  4. Insel TR, Cuthbert BN. Medicine. Brain disorders? Precisely. Science. 2015;348(6234):499–500.

    Article  CAS  PubMed  Google Scholar 

  5. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167(7):748–51.

    Article  PubMed  Google Scholar 

  6. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther. 2011;130(2):226–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry. 2004;56(11):819–24.

    Article  CAS  PubMed  Google Scholar 

  9. Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23(2):335–43.

    Article  CAS  PubMed  Google Scholar 

  10. Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord. 2013;150(3):736–44.

    Article  CAS  PubMed  Google Scholar 

  11. Wium-Andersen MK, Orsted DD, Nielsen SF, Nordestgaard BG. Elevated C-reactive protein levels, psychological distress, and depression in 73, 131 individuals. JAMA Psychiat. 2013;70(2):176–84.

    Article  CAS  Google Scholar 

  12. Vogelzangs N, de Jonge P, Smit JH, Bahn S, Penninx BW. Cytokine production capacity in depression and anxiety. Transl Psychiatry. 2016;6(5):e825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zalli A, Jovanova O, Hoogendijk WJ, Tiemeier H, Carvalho LA. Low-grade inflammation predicts persistence of depressive symptoms. Psychopharmacology. 2016;233(9):1669–78.

    Article  CAS  PubMed  Google Scholar 

  14. Huang M, Su S, Goldberg J, Miller AH, Levantsevych OM, Shallenberger L, et al. Longitudinal association of inflammation with depressive symptoms: a 7-year cross-lagged twin difference study. Brain Behav Immun. 2019;75:200–7.

    Article  PubMed  Google Scholar 

  15. Lamers F, Milaneschi Y, Smit JH, Schoevers RA, Wittenberg G, Penninx B. Longitudinal association between depression and inflammatory markers: results from the Netherlands study of depression and anxiety. Biol Psychiatry. 2019;85(10):829–37.

    Article  PubMed  Google Scholar 

  16. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    Article  CAS  PubMed  Google Scholar 

  17. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kohler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373–87.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan N, Chen Y, Xia Y, Dai J, Liu C. Inflammation-related biomarkers in major psychiatric disorders: a cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Transl Psychiatry. 2019;9(1):233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44(1):75–83.

    Article  PubMed  Google Scholar 

  21. Vetter ML, Wadden TA, Vinnard C, Moore RH, Khan Z, Volger S, et al. Gender differences in the relationship between symptoms of depression and high-sensitivity CRP. Int J Obes. 2013;37(Suppl 1):S38–43.

    Article  CAS  Google Scholar 

  22. Kohler-Forsberg O, Buttenschon HN, Tansey KE, Maier W, Hauser J, Dernovsek MZ, et al. Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain Behav Immun. 2017;62:344–50.

    Article  CAS  PubMed  Google Scholar 

  23. Ambrosio G, Kaufmann FN, Manosso L, Platt N, Ghisleni G, Rodrigues ALS, et al. Depression and peripheral inflammatory profile of patients with obesity. Psychoneuroendocrinology. 2018;91:132–41.

    Article  CAS  PubMed  Google Scholar 

  24. Delgado I, Huet L, Dexpert S, Beau C, Forestier D, Ledaguenel P, et al. Depressive symptoms in obesity: relative contribution of low-grade inflammation and metabolic health. Psychoneuroendocrinology. 2018;91:55–61.

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt FM, Sander C, Minkwitz J, Mergl R, Dalton B, Holdt LM, et al. Serum markers of inflammation mediate the positive association between neuroticism and depression. Front Psych. 2018;9:609.

    Article  Google Scholar 

  26. Jha MK, Miller AH, Minhajuddin A, Trivedi MH. Association of T and non-T cell cytokines with anhedonia: role of gender differences. Psychoneuroendocrinology. 2018;95:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldsmith DR, Haroon E, Woolwine BJ, Jung MY, Wommack EC, Harvey PD, et al. Inflammatory markers are associated with decreased psychomotor speed in patients with major depressive disorder. Brain Behav Immun. 2016;56:281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ye G, Yin GZ, Tang Z, Fu JL, Chen J, Chen SS, et al. Association between increased serum interleukin-6 levels and sustained attention deficits in patients with major depressive disorder. Psychol Med. 2018;48(15):2508–14.

    Article  PubMed  Google Scholar 

  29. Jokela M, Virtanen M, Batty GD, Kivimaki M. Inflammation and specific symptoms of depression. JAMA Psychiat. 2016;73(1):87–8.

    Article  Google Scholar 

  30. Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB, et al. Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology. 2002;26(5):643–52.

    Article  CAS  PubMed  Google Scholar 

  31. Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, et al. Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology. 2007;32(5):516–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klaus F, Paterna JC, Marzorati E, Sigrist H, Gotze L, Schwendener S, et al. Differential effects of peripheral and brain tumor necrosis factor on inflammation, sickness, emotional behavior and memory in mice. Brain Behav Immun. 2016;58:310–26.

    Article  CAS  PubMed  Google Scholar 

  33. Merali Z, Brennan K, Brau P, Anisman H. Dissociating anorexia and anhedonia elicited by interleukin-1beta: antidepressant and gender effects on responding for “free chow” and “earned” sucrose intake. Psychopharmacology. 2003;165(4):413–8.

    Article  CAS  PubMed  Google Scholar 

  34. Moreau M, Andre C, O’Connor JC, Dumich SA, Woods JA, Kelley KW, et al. Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun. 2008;22(7):1087–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Noble F, Rubira E, Boulanouar M, Palmier B, Plotkine M, Warnet JM, et al. Acute systemic inflammation induces central mitochondrial damage and mnesic deficit in adult Swiss mice. Neurosci Lett. 2007;424(2):106–10.

    Article  CAS  PubMed  Google Scholar 

  36. O’Connor JC, Andre C, Wang Y, Lawson MA, Szegedi SS, Lestage J, et al. Interferon-gamma and tumor necrosis factor-alpha mediate the up-regulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci. 2009;29(13):4200–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. O’Connor JC, Lawson MA, Andre C, Briley EM, Szegedi SS, Lestage J, et al. Induction of IDO by bacille Calmette-Guerin is responsible for development of murine depressive-like behavior. J Immunol. 2009;182(5):3202–12.

    Article  PubMed  CAS  Google Scholar 

  38. Salazar A, Gonzalez-Rivera BL, Redus L, Parrott JM, O’Connor JC. Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge. Horm Behav. 2012;62(3):202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Capuron L, Castanon N. Role of inflammation in the development of neuropsychiatric symptom domains: evidence and mechanisms. Curr Top Behav Neurosci. 2017;31:31–44.

    Article  CAS  PubMed  Google Scholar 

  40. Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology. 2017;42(1):193–215.

    Article  CAS  PubMed  Google Scholar 

  41. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, et al. Interferon-alpha-induced changes in tryptophan metabolism. Relationship to depression and paroxetine treatment. Biol Psychiatry. 2003;54(9):906–14.

    Article  CAS  PubMed  Google Scholar 

  44. Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry. 2002;7(5):468–73.

    Article  CAS  PubMed  Google Scholar 

  45. Capuron L, Schroecksnadel S, Feart C, Aubert A, Higueret D, Barberger-Gateau P, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry. 2011;70(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  46. Georgin-Lavialle S, Moura DS, Salvador A, Chauvet-Gelinier JC, Launay JM, Damaj G, et al. Mast cells’ involvement in inflammation pathways linked to depression: evidence in mastocytosis. Mol Psychiatry. 2016;21(11):1511–6.

    Article  CAS  PubMed  Google Scholar 

  47. Zoga M, Oulis P, Chatzipanagiotou S, Masdrakis VG, Pliatsika P, Boufidou F, et al. Indoleamine 2,3-dioxygenase and immune changes under antidepressive treatment in major depression in females. In Vivo. 2014;28(4):633–8.

    CAS  PubMed  Google Scholar 

  48. Savitz J, Drevets WC, Wurfel BE, Ford BN, Bellgowan PS, Victor TA, et al. Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder. Brain Behav Immun. 2015;46:55–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meier TB, Drevets WC, Wurfel BE, Ford BN, Morris HM, Victor TA, et al. Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun. 2016;53:39–48.

    Article  CAS  PubMed  Google Scholar 

  50. Wurfel BE, Drevets WC, Bliss SA, McMillin JR, Suzuki H, Ford BN, et al. Serum kynurenic acid is reduced in affective psychosis. Transl Psychiatry. 2017;7(5):e1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15(4):393–403.

    Article  CAS  PubMed  Google Scholar 

  52. Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation. 2011;8:94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008;13(9):829. 33-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54(5):504–14.

    Article  PubMed  Google Scholar 

  55. Haroon E, Woolwine BJ, Chen X, Pace TW, Parekh S, Spivey JR, et al. IFN-alpha-induced cortical and subcortical glutamate changes assessed by magnetic resonance spectroscopy. Neuropsychopharmacology. 2014;39(7):1777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, et al. Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry. 2016;21(10):1351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Andre C, O’Connor JC, Kelley KW, Lestage J, Dantzer R, Castanon N. Spatio-temporal differences in the profile of murine brain expression of proinflammatory cytokines and indoleamine 2,3-dioxygenase in response to peripheral lipopolysaccharide administration. J Neuroimmunol. 2008;200(1–2):90–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moreau M, Lestage J, Verrier D, Mormede C, Kelley KW, Dantzer R, et al. Bacille Calmette-Guerin inoculation induces chronic activation of peripheral and brain indoleamine 2,3-dioxygenase in mice. J Infect Dis. 2005;192(3):537–44.

    Article  CAS  PubMed  Google Scholar 

  59. O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry. 2009;14(5):511–22.

    Article  PubMed  CAS  Google Scholar 

  60. Lawson MA, McCusker RH, Kelley KW. Interleukin-1 beta converting enzyme is necessary for development of depression-like behavior following intracerebroventricular administration of lipopolysaccharide to mice. J Neuroinflammation. 2013;10:54.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Godbout JP, Moreau M, Lestage J, Chen J, Sparkman NL, O’Connor J, et al. Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology. 2008;33(10):2341–51.

    Article  CAS  PubMed  Google Scholar 

  62. Kelley KW, O’Connor JC, Lawson MA, Dantzer R, Rodriguez-Zas SL, McCusker RH. Aging leads to prolonged duration of inflammation-induced depression-like behavior caused by Bacillus Calmette-Guerin. Brain Behav Immun. 2013;32:63–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Andre C, Dinel AL, Ferreira G, Laye S, Castanon N. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2,3-dioxygenase activation. Brain Behav Immun. 2014;41:10–21.

    Article  CAS  PubMed  Google Scholar 

  64. Corona AW, Norden DM, Skendelas JP, Huang Y, O’Connor JC, Lawson M, et al. Indoleamine 2,3-dioxygenase inhibition attenuates lipopolysaccharide induced persistent microglial activation and depressive-like complications in fractalkine receptor (CX(3)CR1)-deficient mice. Brain Behav Immun. 2013;31:134–42.

    Article  CAS  PubMed  Google Scholar 

  65. Du HX, Chen XG, Zhang L, Liu Y, Zhan CS, Chen J, et al. Microglial activation and neurobiological alterations in experimental autoimmune prostatitis-induced depressive-like behavior in mice. Neuropsychiatr Dis Treat. 2019;15:2231–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lawson MA, Kelley KW, Dantzer R. Intracerebroventricular administration of HIV-1 tat induces brain cytokine and indoleamine 2,3-dioxygenase expression: a possible mechanism for AIDS comorbid depression. Brain Behav Immun. 2011;25(8):1569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Souza LC, Jesse CR, de Gomes MG, Del Fabbro L, Goes ATR, Donato F, et al. Activation of brain indoleamine-2,3-dioxygenase contributes to depressive-like behavior induced by an Intracerebroventricular injection of Streptozotocin in mice. Neurochem Res. 2017;42(10):2982–95.

    Article  CAS  PubMed  Google Scholar 

  68. Casaril AM, Domingues M, de Andrade LD, Birmann PT, Padilha N, Vieira B, et al. Depression- and anxiogenic-like behaviors induced by lipopolysaccharide in mice are reversed by a selenium-containing indolyl compound: behavioral, neurochemical and computational insights involving the serotonergic system. J Psychiatr Res. 2019;115:1–12.

    Article  PubMed  Google Scholar 

  69. Heisler JM, O’Connor JC. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory. Brain Behav Immun. 2015;50:115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gibney SM, McGuinness B, Prendergast C, Harkin A, Connor TJ. Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun. 2013;28:170–81.

    Article  CAS  PubMed  Google Scholar 

  71. Barichello T, Generoso JS, Simoes LR, Elias SG, Tashiro MH, Dominguini D, et al. Inhibition of indoleamine 2,3-dioxygenase prevented cognitive impairment in adult Wistar rats subjected to pneumococcal meningitis. Transl Res. 2013;162(6):390–7.

    Article  CAS  PubMed  Google Scholar 

  72. Fertan E, Stover KRJ, Brant MG, Stafford PM, Kelly B, Diez-Cecilia E, et al. Effects of the novel IDO inhibitor DWG-1036 on the behavior of male and female 3xTg-AD mice. Front Pharmacol. 2019;10:1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Souza LC, Jesse CR, Antunes MS, Ruff JR, de Oliveira ED, Gomes NS, et al. Indoleamine-2,3-dioxygenase mediates neurobehavioral alterations induced by an intracerebroventricular injection of amyloid-beta1-42 peptide in mice. Brain Behav Immun. 2016;56:363–77.

    Article  CAS  PubMed  Google Scholar 

  74. Xie W, Cai L, Yu Y, Gao L, Xiao L, He Q, et al. Activation of brain indoleamine 2,3-dioxygenase contributes to epilepsy-associated depressive-like behavior in rats with chronic temporal lobe epilepsy. J Neuroinflammation. 2014;11:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parrott JM, Redus L, O’Connor JC. Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge. J Neuroinflammation. 2016;13(1):124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Baganz NL, Lindler KM, Zhu CB, Smith JT, Robson MJ, Iwamoto H, et al. A requirement of serotonergic p38alpha mitogen-activated protein kinase for peripheral immune system activation of CNS serotonin uptake and serotonin-linked behaviors. Transl Psychiatry. 2015;5:e671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Parrott JM, Redus L, Santana-Coelho D, Morales J, Gao X, O’Connor JC. Neurotoxic kynurenine metabolism is increased in the dorsal hippocampus and drives distinct depressive behaviors during inflammation. Transl Psychiatry. 2016;6(10):e918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Laumet G, Zhou W, Dantzer R, Edralin JD, Huo X, Budac DP, et al. Up-regulation of neuronal kynurenine 3-monooxygenase mediates depression-like behavior in a mouse model of neuropathic pain. Brain Behav Immun. 2017;66:94–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Agudelo LZ, Femenia T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V, et al. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell. 2014;159(1):33–45.

    Article  CAS  PubMed  Google Scholar 

  80. Chess AC, Landers AM, Bucci DJ. L-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning. Behav Brain Res. 2009;201(2):325–31.

    Article  CAS  PubMed  Google Scholar 

  81. Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology. 2013;38(9):1609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vichaya EG, Laumet G, Christian DL, Grossberg AJ, Estrada DJ, Heijnen CJ, et al. Motivational changes that develop in a mouse model of inflammation-induced depression are independent of indoleamine 2,3 dioxygenase. Neuropsychopharmacology. 2019;44(2):364–71.

    Article  CAS  PubMed  Google Scholar 

  83. Vancassel S, Capuron L, Castanon N. Brain kynurenine and BH4 pathways: relevance to the pathophysiology and treatment of inflammation-driven depressive symptoms. Front Neurosci. 2018;12:499.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Huang A, Zhang YY, Chen K, Hatakeyama K, Keaney JF Jr. Cytokine-stimulated GTP cyclohydrolase I expression in endothelial cells requires coordinated activation of nuclear factor-kappaB and Stat1/Stat3. Circ Res. 2005;96(2):164–71.

    Article  CAS  PubMed  Google Scholar 

  85. Lazarus RA, Wallick DE, Dietrich RF, Gottschall DW, Benkovic SJ, Gaffney BJ, et al. The mechanism of phenylalanine hydroxylase. Fed Proc. 1982;41(9):2605–7.

    CAS  PubMed  Google Scholar 

  86. Sakai N, Kaufman S, Milstien S. Parallel induction of nitric oxide and tetrahydrobiopterin synthesis by cytokines in rat glial cells. J Neurochem. 1995;65(2):895–902.

    Article  CAS  PubMed  Google Scholar 

  87. Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger G, Yim JJ, et al. Tetrahydrobiopterin biosynthetic activities in human macrophages, fibroblasts, THP-1, and T 24 cells. GTP-cyclohydrolase I is stimulated by interferon-gamma, and 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase are constitutively present. J Biol Chem. 1990;265(6):3189–92.

    Article  CAS  PubMed  Google Scholar 

  88. Werner ER, Blau N, Thony B. Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J. 2011;438(3):397–414.

    Article  CAS  PubMed  Google Scholar 

  89. Neurauter G, Schrocksnadel K, Scholl-Burgi S, Sperner-Unterweger B, Schubert C, Ledochowski M, et al. Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab. 2008;9(7):622–7.

    Article  CAS  PubMed  Google Scholar 

  90. Kirsch M, Korth HG, Stenert V, Sustmann R, de Groot H. The autoxidation of tetrahydrobiopterin revisited. Proof of superoxide formation from reaction of tetrahydrobiopterin with molecular oxygen. J Biol Chem. 2003;278(27):24481–90.

    Article  CAS  PubMed  Google Scholar 

  91. Felger JC, Li L, Marvar PJ, Woolwine BJ, Harrison DG, Raison CL, et al. Tyrosine metabolism during interferon-alpha administration: association with fatigue and CSF dopamine concentrations. Brain Behav Immun. 2013;31:153–60.

    Article  CAS  PubMed  Google Scholar 

  92. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199–229.

    Article  CAS  PubMed  Google Scholar 

  93. Felger JC, Miller AH. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol. 2012;33(3):315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ, et al. Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry. 2012;69(10):1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30(4):297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry. 2016;21(10):1358–65.

    Article  CAS  PubMed  Google Scholar 

  97. Longo N. Disorders of biopterin metabolism. J Inherit Metab Dis. 2009;32(3):333–42.

    Article  PubMed  Google Scholar 

  98. Barker JE, Strangward HM, Brand MP, Hurst RD, Land JM, Clark JB, et al. Increased inducible nitric oxide synthase protein but limited nitric oxide formation occurs in astrocytes of the hph-1 (tetrahydrobiopterin deficient) mouse. Brain Res. 1998;804(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  99. Brand MP, Hyland K, Engle T, Smith I, Heales SJ. Neurochemical effects following peripheral administration of tetrahydropterin derivatives to the hph-1 mouse. J Neurochem. 1996;66(3):1150–6.

    Article  CAS  PubMed  Google Scholar 

  100. Lam AA, Hyland K, Heales SJ. Tetrahydrobiopterin availability, nitric oxide metabolism and glutathione status in the hph-1 mouse; implications for the pathogenesis and treatment of tetrahydrobiopterin deficiency states. J Inherit Metab Dis. 2007;30(2):256–62.

    Article  CAS  PubMed  Google Scholar 

  101. Nasser A, Moller LB, Olesen JH, Konradsen Refsgaard L, Andreasen JT. Anxiety- and depression-like phenotype of hph-1 mice deficient in tetrahydrobiopterin. Neurosci Res. 2014;89:44–53.

    Article  CAS  PubMed  Google Scholar 

  102. Zeng BY, Heales SJ, Canevari L, Rose S, Jenner P. Alterations in expression of dopamine receptors and neuropeptides in the striatum of GTP cyclohydrolase-deficient mice. Exp Neurol. 2004;190(2):515–24.

    Article  CAS  PubMed  Google Scholar 

  103. Yang S, Lee YJ, Kim JM, Park S, Peris J, Laipis P, et al. A murine model for human sepiapterin-reductase deficiency. Am J Hum Genet. 2006;78(4):575–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Homma D, Katoh S, Tokuoka H, Ichinose H. The role of tetrahydrobiopterin and catecholamines in the developmental regulation of tyrosine hydroxylase level in the brain. J Neurochem. 2013;126(1):70–81.

    Article  CAS  PubMed  Google Scholar 

  105. Homma D, Sumi-Ichinose C, Tokuoka H, Ikemoto K, Nomura T, Kondo K, et al. Partial biopterin deficiency disturbs postnatal development of the dopaminergic system in the brain. J Biol Chem. 2011;286(2):1445–52.

    Article  CAS  PubMed  Google Scholar 

  106. Kwak SS, Jeong M, Choi JH, Kim D, Min H, Yoon Y, et al. Amelioration of behavioral abnormalities in BH(4)-deficient mice by dietary supplementation of tyrosine. PLoS One. 2013;8(4):e60803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry. 2010;68(8):748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Capuron L, Pagnoni G, Demetrashvili MF, Lawson DH, Fornwalt FB, Woolwine B, et al. Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology. 2007;32(11):2384–92.

    Article  CAS  PubMed  Google Scholar 

  109. Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology. 2017;42(1):216–41.

    Article  CAS  PubMed  Google Scholar 

  110. Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD. Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry. 2008;63(11):1022–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bjork JM, Grant SJ, Chen G, Hommer DW. Dietary tyrosine/phenylalanine depletion effects on behavioral and brain signatures of human motivational processing. Neuropsychopharmacology. 2014;39(3):595–604.

    Article  CAS  PubMed  Google Scholar 

  112. Anderson DN, Wilkinson AM, Abou-Saleh MT, Blair JA. Recovery from depression after electroconvulsive therapy is accompanied by evidence of increased tetrahydrobiopterin-dependent hydroxylation. Acta Psychiatr Scand. 1994;90(1):10–3.

    Article  CAS  PubMed  Google Scholar 

  113. Blair JA, Barford PA, Morar C, Pheasant AE, Hamon CG, Whitburn SB, et al. Tetrahydrobiopterin metabolism in depression. Lancet. 1984;2(8395):163.

    Article  CAS  PubMed  Google Scholar 

  114. Knapp S, Irwin M. Plasma levels of tetrahydrobiopterin and folate in major depression. Biol Psychiatry. 1989;26(2):156–62.

    Article  CAS  PubMed  Google Scholar 

  115. Felger JC, Mun J, Kimmel HL, Nye JA, Drake DF, Hernandez CR, et al. Chronic interferon-alpha decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in nonhuman primates. Neuropsychopharmacology. 2013;38(11):2179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Felger JC, Hernandez CR, Miller AH. Levodopa reverses cytokine-induced reductions in striatal dopamine release. Int J Neuropsychopharmacol. 2015;18(4).

    Google Scholar 

  117. van Heesch F, Prins J, Korte-Bouws GA, Westphal KG, Lemstra S, Olivier B, et al. Systemic tumor necrosis factor-alpha decreases brain stimulation reward and increases metabolites of serotonin and dopamine in the nucleus accumbens of mice. Behav Brain Res. 2013;253:191–5.

    Article  PubMed  CAS  Google Scholar 

  118. Nunes EJ, Randall PA, Estrada A, Epling B, Hart EE, Lee CA, et al. Effort-related motivational effects of the pro-inflammatory cytokine interleukin 1-beta: studies with the concurrent fixed ratio 5/ chow feeding choice task. Psychopharmacology. 2014;231(4):727–36.

    Article  CAS  PubMed  Google Scholar 

  119. Yohn SE, Arif Y, Haley A, Tripodi G, Baqi Y, Muller CE, et al. Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization. Psychopharmacology. 2016;233(19–20):3575–86.

    Article  CAS  PubMed  Google Scholar 

  120. Curtius HC, Niederwieser A, Levine RA, Lovenberg W, Woggon B, Angst J. Successful treatment of depression with tetrahydrobiopterin. Lancet. 1983;1(8325):657–8.

    Article  CAS  PubMed  Google Scholar 

  121. Pan L, McKain BW, Madan-Khetarpal S, McGuire M, Diler RS, Perel JM, et al. GTP-cyclohydrolase deficiency responsive to sapropterin and 5-HTP supplementation: relief of treatment-refractory depression and suicidal behaviour. BMJ Case Rep. 2011;2011

    Google Scholar 

  122. Woggon B, Angst J, Curtius HC, Niederwieser A. Unsuccessful treatment of depression with tetrahydrobiopterin. Lancet. 1984;2(8417–8418):1463.

    Article  CAS  PubMed  Google Scholar 

  123. Asami T, Kuribara H. Enhancement of ambulation-increasing effect of methamphetamine by peripherally-administered 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (R-THBP) in mice. Jpn J Pharmacol. 1989;50(2):175–84.

    Article  CAS  PubMed  Google Scholar 

  124. Mizuma H, Mizutani M, Nozaki S, Iizuka H, Tohyama H, Nishimura N, et al. Improvement by repeated administration of 6R-tetrahydrobiopterin of 5,7-dihydroxytryptamine-induced abnormal behaviors in immature rats. Biochem Biophys Res Commun. 2003;302(1):156–61.

    Article  CAS  PubMed  Google Scholar 

  125. Fanet H, Ducrocq F, Tournissac M, Oummadi A, Lo A, Bourrassa P, et al. Tetrahydrobiopterin administration facilitates amphetamine-induced dopamine release and motivation in mice. Behav Brain Res. 2020;379:112348.

    Article  CAS  PubMed  Google Scholar 

  126. Capuron L, Pagnoni G, Demetrashvili M, Woolwine BJ, Nemeroff CB, Berns GS, et al. Anterior cingulate activation and error processing during interferon-alpha treatment. Biol Psychiatry. 2005;58(3):190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain. 1995;118(Pt 1):279–306.

    Article  PubMed  Google Scholar 

  128. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6):215–22.

    Article  CAS  PubMed  Google Scholar 

  129. Botvinick MM, Cohen JD, Carter CS. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci. 2004;8(12):539–46.

    Article  PubMed  Google Scholar 

  130. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science. 1998;280(5364):747–9.

    Article  CAS  PubMed  Google Scholar 

  131. Aouizerate B, Guehl D, Cuny E, Rougier A, Bioulac B, Tignol J, et al. Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Prog Neurobiol. 2004;72(3):195–221.

    Article  PubMed  Google Scholar 

  132. Maltby N, Tolin DF, Worhunsky P, O’Keefe TM, Kiehl KA. Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive disorder: an event-related fMRI study. NeuroImage. 2005;24(2):495–503.

    Article  PubMed  Google Scholar 

  133. Riesel A, Endrass T, Kaufmann C, Kathmann N. Overactive error-related brain activity as a candidate endophenotype for obsessive-compulsive disorder: evidence from unaffected first-degree relatives. Am J Psychiatry. 2011;168(3):317–24.

    Article  PubMed  Google Scholar 

  134. Agam Y, Greenberg JL, Isom M, Falkenstein MJ, Jenike E, Wilhelm S, et al. Aberrant error processing in relation to symptom severity in obsessive-compulsive disorder: a multimodal neuroimaging study. Neuroimage Clin. 2014;5:141–51.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Masten CL, Colich NL, Rudie JD, Bookheimer SY, Eisenberger NI, Dapretto M. An fMRI investigation of responses to peer rejection in adolescents with autism spectrum disorders. Dev Cogn Neurosci. 2011;1(3):260–70.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Hamilton JP, Farmer M, Fogelman P, Gotlib IH. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol Psychiatry. 2015;78(4):224–30.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Slavich GM, Way BM, Eisenberger NI, Taylor SE. Neural sensitivity to social rejection is associated with inflammatory responses to social stress. Proc Natl Acad Sci U S A. 2010;107(33):14817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry. 2009;66(5):407–14.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  140. Schultz W. Getting formal with dopamine and reward. Neuron. 2002;36(2):241–63.

    Article  CAS  PubMed  Google Scholar 

  141. Schultz W, Dickinson A. Neuronal coding of prediction errors. Annu Rev Neurosci. 2000;23:473–500.

    Article  CAS  PubMed  Google Scholar 

  142. Treadway MT, Admon R, Arulpragasam AR, Mehta M, Douglas S, Vitaliano G, et al. Association between Interleukin-6 and striatal prediction-error signals following acute stress in healthy female participants. Biol Psychiatry. 2017;82(8):570–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gradin VB, Kumar P, Waiter G, Ahearn T, Stickle C, Milders M, et al. Expected value and prediction error abnormalities in depression and schizophrenia. Brain. 2011;134(Pt 6):1751–64.

    Article  PubMed  Google Scholar 

  144. Savitz J, Dantzer R, Wurfel BE, Victor TA, Ford BN, Bodurka J, et al. Neuroprotective kynurenine metabolite indices are abnormally reduced and positively associated with hippocampal and amygdalar volume in bipolar disorder. Psychoneuroendocrinology. 2015;52:200–11.

    Article  CAS  PubMed  Google Scholar 

  145. Doolin K, Allers KA, Pleiner S, Liesener A, Farrell C, Tozzi L, et al. Altered tryptophan catabolite concentrations in major depressive disorder and associated changes in hippocampal subfield volumes. Psychoneuroendocrinology. 2018;95:8–17.

    Article  CAS  PubMed  Google Scholar 

  146. Opel N, Cearns M, Clark S, Toben C, Grotegerd D, Heindel W, et al. Large-scale evidence for an association between low-grade peripheral inflammation and brain structural alterations in major depression in the BiDirect study. J Psychiatry Neurosci. 2019;44(6):423–31.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ironside M, Admon R, Maddox SA, Mehta M, Douglas S, Olson DP, et al. Inflammation and depressive phenotypes: evidence from medical records from over 12 000 patients and brain morphology. Psychol Med. 2019:1–9.

    Google Scholar 

  148. Phillips ML, Chase HW, Sheline YI, Etkin A, Almeida JR, Deckersbach T, et al. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry. 2015;172(2):124–38.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Pralong E, Magistretti P, Stoop R. Cellular perspectives on the glutamate-monoamine interactions in limbic lobe structures and their relevance for some psychiatric disorders. Prog Neurobiol. 2002;67(3):173–202.

    Article  CAS  PubMed  Google Scholar 

  150. Schmidt WJ. Dopamine-glutamate interactions in the basal ganglia. Amino Acids. 1998;14(1–3):5–10.

    Article  CAS  PubMed  Google Scholar 

  151. Wang M, Wong AH, Liu F. Interactions between NMDA and dopamine receptors: a potential therapeutic target. Brain Res. 2012;1476:154–63.

    Article  CAS  PubMed  Google Scholar 

  152. Haroon E, Chen X, Li Z, Patel T, Woolwine BJ, Hu XP, et al. Increased inflammation and brain glutamate define a subtype of depression with decreased regional homogeneity, impaired network integrity, and anhedonia. Transl Psychiatry. 2018;8(1):189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Vogenberg FR, Isaacson Barash C, Pursel M. Personalized medicine: part 1: evolution and development into theranostics. Pharm Ther. 2010;35(10):560–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucile Capuron .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aouizerate, B., Vancassel, S., Castanon, N., Capuron, L. (2021). Inflammatory Bases of Neuropsychiatric Symptom Domains: Mechanisms and Specificity. In: Berk, M., Leboyer, M., Sommer, I.E. (eds) Immuno-Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-71229-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71229-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71228-0

  • Online ISBN: 978-3-030-71229-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics