Skip to main content

IoT Computing for Monitoring NFT-I Cultivation Technique in Vegetable Production

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 295))

Included in the following conference series:

  • 971 Accesses

Abstract

This article compares the production and growth times of three types of lettuce and in three cultivation systems NFT-I, RF and soil with Worm Humus. Additionally, it describes the NFT-I cultivation system, which is a cultivation technique supported by the Internet of Things (IoT). NFT-I allows to measure and store the data of three parameters: ambient temperature, pH level and electrical conductivity; the advantage is that this system allows notifying the farmer about the current status of each variable and notifying through the social network Telegram (through bots). The methodology used was to start the planting process in the three systems on the same day, then the NFT-I system was saving data read by the sensors, and later measurements were made of the time and growth of each of the planted lettuces. The results show that this system can reduce electricity consumption by 91.6%; on the other hand, it helps farmers monitor plant growth. On the other hand, regarding the harvest time, it can be verified that the RF system, NFT-I and land were harvested in 61, 69 and 105 days respectively, which shows that RF is the most efficient; In terms of size, the number of leaves, length and width, RF is also of better size than the NFT-I crop and soil. Finally, in these times of confinement due to the coronavirus disease (COVID-19), in which the economy has slowed and the needs are multiple, this NFT-I system could help people create their vegetable growing system of quickly and cheaply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross, N.: Hidroponía: La GuíaCompleta de Hidroponía Para Principiantes. Babelcube Inc. (2017)

    Google Scholar 

  2. Zambrano Mendoza, O.O.: Validación de cincogenotipos de lechuga Lactusa sativa L. cultivados en dos sistemas de producción hidropónica (2016)

    Google Scholar 

  3. Perez Reategui, F.I., Perez Reategui, U.F.: Aplicación de software para controlar el balance de la soluciónnutritiva de un sistema cultivo de lechuga (Lactuca Sativa) bajo técnica de hidroponía automatizada a raíz del monitoreo de nitrógeno, PH y conductividad eléctrica en Pucallpa (2016). http://repositorio.unu.edu.pe/handle/UNU/3888

  4. Gashgari, R., Alharbi, K., Mughrbil, K., Jan, A., Glolam, A.: Comparison between growing plants in hydroponic system and soil based system. In: Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering (2018). https://doi.org/10.11159/icmie18.131

  5. Samangooei, M., Sassi, P., Lack, A.: Soil-less systems vs. soil-based systems for cultivating edible plants on buildings in relation to the contribution towards sustainable cities. J. Food Agric. Soc. 4, 24–39 (2016)

    Google Scholar 

  6. Changmai, T., Gertphol, S., Chulak, P.: Smart hydroponic lettuce farm using internet of things. In: 2018 10th International Conference on Knowledge and Smart Technology: Cybernetics in the Next Decades, KST 2018, pp. 231–236 (2018). https://doi.org/10.1109/KST.2018.8426141

  7. Crisnapati, P.N., Wardana, I.N.K., Aryanto, I.K.A.A., Hermawan, A.: Hommons: hydroponic management and monitoring system for an IOT based NFT farm using web technology. In: 2017 5th International Conference on Cyber and IT Service Management (CITSM), pp. 1–6 (2017)

    Google Scholar 

  8. Wortman, S.E.: Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. 194, 34–42 (2015). https://doi.org/10.1016/j.scienta.2015.07.045

    Article  Google Scholar 

  9. Jsm, L.M., Sridevi, C.: Design of efficient hydroponic nutrient solution control system using soft computing based solution grading. In: 2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), pp. 148–154 (2014)

    Google Scholar 

  10. Umamaheswari, S., Preethi, A., Pravin, E., Dhanusha, R.: Integrating scheduled hydroponic system. In: 2016 IEEE International Conference on Advances in Computer Applications, ICACA 2016, pp. 333–337 (2017). https://doi.org/10.1109/ICACA.2016.7887976

  11. Yolanda, D., Hindersah, H., Hadiatna, F., Triawan, M.A.: Implementation of real-time fuzzy logic control for NFT-based hydroponic system on Internet of Things environment. In: Proceedings of the 2016 6th International Conference on System Engineering and Technology, ICSET 2016, pp. 153–159 (2017). https://doi.org/10.1109/FIT.2016.7857556

  12. Filho, A.F.M., et al.: Monitoring, calibration and maintenance of optimized nutrient solutions in curly lettuce (Lactuca sativa, L.) hydroponic cultivation. Aust. J. Crop Sci. 12(04), 572–582 (2018). https://doi.org/10.21475/ajcs.18.12.04.pne858

    Article  Google Scholar 

  13. Liu, T., Yang, M., Han, Z., Ow, D.W.: Rooftop production of leafy vegetables can be profitable and less contaminated than farm-grown vegetables. Agron. Sustain. Dev. 36(3), 1–9 (2016). https://doi.org/10.1007/s13593-016-0378-6

    Article  Google Scholar 

  14. Li, B., et al.: Preliminary study on roof agriculture. Acta Agriculturae Zhejiangensis 24, 449–454 (2012)

    Google Scholar 

  15. Ray, P.P.: Internet of things for smart agriculture: technologies, practices and future direction. J. Ambient Intell. Smart Environ. 9, 395–420 (2017)

    Article  Google Scholar 

  16. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29, 1645–1660 (2013)

    Article  Google Scholar 

  17. Li, J., Weihua, G., Yuan, H.: Research on IOT technology applied to intelligent agriculture. In: Huang, Bo., Yao, Y. (eds.) Proceedings of the 5th International Conference on Electrical Engineering and Automatic Control. LNEE, vol. 367, pp. 1217–1224. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48768-6_136

    Chapter  Google Scholar 

  18. Carrión, G., Huerta, M., Barzallo, B.: Internet of Things (IoT) applied to an urban garden. In: Proceedings - 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018, pp. 155–161 (2018). https://doi.org/10.1109/FiCloud.2018.00030

  19. Pitakphongmetha, J., Boonnam, N., Wongkoon, S., Horanont, T., Somkiadcharoen, D., Prapakornpilai, J.: Internet of things for planting in smart farm hydroponics style. In: 2016 International Computer Science and Engineering Conference (ICSEC), pp. 1–5 (2016)

    Google Scholar 

  20. Ruengittinun, S., Phongsamsuan, S., Sureeratanakorn, P.: Applied internet of thing for smart hydroponic farming ecosystem (HFE). In: 2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media), pp. 1–4 (2017)

    Google Scholar 

  21. Meza Arroyo, M.: Comportamiento de trestécnicas de cultivo hidropónico con lechuga (Lactuca sativa L.) en un sistema acuapónico-Echarati-La Convención-Cusco (2018)

    Google Scholar 

  22. Scaturro, G.N.: Evaluación de dos sistemas de producción de lechuga en hidroponia y un cultivo tradicional bajo cubierta (2019)

    Google Scholar 

  23. Ibarra, M.J., Huaraca, C., Soto, W., Palomino, C.: MLMS: mini learning management system for schools without internet connection. In: Twelfth Latin American Conference on Learning Technologies (LACLO), pp. 1–7 (2017)

    Google Scholar 

Download references

Acknowledgments

Thanks to the Micaela Bastidas National University of Apurímac for supporting the financing for the execution of this project, which was the winner of the III contest of basic and applied research projects for teachers with the funding of mining canon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel J. Ibarra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibarra, M.J., Alcarraz, E.W., Tapia, O., Kari, A., Ponce, Y., Pozo, R.S. (2022). IoT Computing for Monitoring NFT-I Cultivation Technique in Vegetable Production. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-030-82196-8_47

Download citation

Publish with us

Policies and ethics