Skip to main content

A Case Study for \(\zeta (4)\)

  • Conference paper
  • First Online:
Transcendence in Algebra, Combinatorics, Geometry and Number Theory (TRANS 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 373))

Included in the following conference series:

Abstract

Using symbolic summation tools in the setting of difference rings, we prove a two-parametric identity that relates rational approximations to \(\zeta (4)\).

Date: 17 April 2020. Revised: 22 September 2020

Research partially supported by the Austrian Science Fund (FWF) grants SFB F5006-N15 and F5009-N15 in the framework of the Special Research Program “Algorithmic and Enumerative Combinatorics”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In case that the reader does not have access to Mathematica, we supplement the pdf file SchneiderZudilinMMA.pdf (same www-path!) that contains all the calculations in printed form.

References

  1. Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: Calculating three loop ladder and V-topologies for massive operator matrix elements by Computer Algebra. Comput. Phys. Comm. 202, 33–112 (2016)

    Google Scholar 

  2. Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear differential and difference equations. In: von zur Gathen, J. (ed.) Proceedings of ISSAC’94, pp. 169–174. ACM Press (1994)

    Google Scholar 

  3. Andrews, G.E., Paule, P., Schneider, C.: Plane partitions VI: Stembridge’s TSPP Theorem. Adv. Appl. Math. 34:4, 709–739 (2005)

    Google Scholar 

  4. Apéry, R.: Irrationalité de \(\zeta (2)\) et \(\zeta (3)\). Astérisque 61, 11–13 (1979)

    Google Scholar 

  5. Blümlein, J., Round, M., Schneider, C.: Refined holonomic summation algorithms in Particle Physics. In: Zima, E., Schneider, C. (eds.) Advances in Computer Algebra (WWCA 2016). Springer Proceedings in Mathematics and Statistics, vol. 226, pp. 51–91. Springer (2018)

    Google Scholar 

  6. Bostan, A., Chamizo, F., Sundqvist, M.P.: On an integral identity (2020). arXiv:2002.10682 [math.CA]

  7. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Math. 217, 115–134 (2000)

    Google Scholar 

  8. Cohen, H.: Accélération de la convergence de certaines récurrences linéaires. Sém. Théorie Nombres Bordeaux, exp. 16 (1980–81)

    Google Scholar 

  9. Ekhad, S.B., Zeilberger, D., Zudilin, W.: Two definite integrals that are definitely (and surprisingly!) equal. Math. Intelligencer 42, 10–11 (2020)

    Google Scholar 

  10. Hardouin, C., Singer, M.F.: Differential Galois theory of linear difference equations. Math. Ann. 342:2, 333–377 (2008)

    Google Scholar 

  11. Hendriks, P.A., Singer, M.F.: Solving difference equations in finite terms. J. Symbolic Comput. 27:3, 239–259 (1999)

    Google Scholar 

  12. Karr, M.: Summation in finite terms. J. Assoc. Comput. Machinery 28, 305–350 (1981)

    Google Scholar 

  13. Koutschan, C.: Creative telescoping for holonomic functions. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Texts and Monographs in Symbolic Computation, pp. 171–194. Springer (2013)

    Google Scholar 

  14. Krattenthaler, C., Rivoal, T.: Hypergéométrie et fonction zêta de Riemann. Mem. Amer. Math. Soc. 186:875 (2007)

    Google Scholar 

  15. Marcovecchio, R., Zudilin, W.: Hypergeometric rational approximations to \(\zeta (4)\). Proc. Edinburgh Math. Soc. 63:2, 374–397 (2020)

    Google Scholar 

  16. Paule, P., Schorn, M.: A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symbolic Comput. 20:5-6, 673–698 (1995)

    Google Scholar 

  17. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symbolic Comput. 14:2–3, 243–264 (1992)

    Google Scholar 

  18. Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A=B\). A K Peters, Wellesley, MA (1996)

    Google Scholar 

  19. Schneider, C.: Symbolic summation in difference fields. PhD Thesis. Technical Report 01-17, RISC-Linz, J. Kepler University (2001)

    Google Scholar 

  20. Schneider, C.: A new Sigma approach to multi-summation. Adv. Appl. Math. 34:4, 740–767 (2005)

    Google Scholar 

  21. Schneider, C.: Apéry’s double sum is plain sailing indeed. Electron. J. Combin. 14, N5 (2007)

    Google Scholar 

  22. Schneider, C.: Symbolic summation assists combinatorics. Sém. Lothar. Combin. 56:B56b, 1–36 (2007)

    Google Scholar 

  23. Schneider, C.: A refined difference field theory for symbolic summation. J. Symbolic Comput. 43:9, 611–644 (2008)

    Google Scholar 

  24. Schneider, C.: Parameterized telescoping proves algebraic independence of sums. Ann. Comb. 14, 533–552 (2010)

    Google Scholar 

  25. Schneider, C.: Simplifying multiple sums in difference fields. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Texts and Monographs in Symbolic Computation, pp. 325–360. Springer (2013)

    Google Scholar 

  26. Schneider, C.: Fast algorithms for refined parameterized telescoping in difference fields. In: Weimann, M., Guitierrez, J., Schicho, J. (eds.) Computer Algebra and Polynomials. Lecture Notes in Computer Science, vol. 8942, pp. 157–191. Springer (2015)

    Google Scholar 

  27. Schneider, C.: A difference ring theory for symbolic summation. J. Symbolic Comput. 72, 82–127 (2016)

    Google Scholar 

  28. Schneider, C.: Summation theory II: Characterizations of \(R\Pi \Sigma \)-extensions and algorithmic aspects. J. Symbolic Comput. 80:3, 616–664 (2017)

    Google Scholar 

  29. Sorokin, V.N.: One algorithm for fast calculation of \(\pi ^4\). Russian Academy of Sciences, M.V. Keldysh Institute for Applied Mathematics, Moscow (2002)

    Google Scholar 

  30. van der Poorten, A.: A proof that Euler missed... Apéry’s proof of the irrationality of \(\zeta (3)\). Math. Intelligencer 1:4, 195–203 (1978/79)

    Google Scholar 

  31. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32, 321–368 (1990)

    Google Scholar 

  32. Zeilberger, D.: The method of creative telescoping. J. Symbolic Comput. 11, 195–204 (1991)

    Google Scholar 

  33. Zudilin, W.: Well-poised hypergeometric service for diophantine problems of zeta values. J. Théorie Nombres Bordeaux 15:2, 593–626 (2003)

    Google Scholar 

  34. Zudilin, W.: A hypergeometric problem. J. Comput. Appl. Math. 233, 856–857 (2009)

    Google Scholar 

Download references

Acknowledgements

This project commenced during the joint visit of the authors in the Max Planck Institute for Mathematics (Bonn) in 2007 and went on during the second author’s visit in the Research Institute for Symbolic Computation (Linz) in February 2020. We thank the staff of these institutes for providing such excellent conditions for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wadim Zudilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schneider, C., Zudilin, W. (2021). A Case Study for \(\zeta (4)\). In: Bostan, A., Raschel, K. (eds) Transcendence in Algebra, Combinatorics, Geometry and Number Theory. TRANS 2019. Springer Proceedings in Mathematics & Statistics, vol 373. Springer, Cham. https://doi.org/10.1007/978-3-030-84304-5_17

Download citation

Publish with us

Policies and ethics