Skip to main content

Color Point Pair Feature Light

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Abstract

Object recognition in the field of computer vision is a constant challenge to achieve better precision in less time. In this research, is proposed a new 3D descriptor, to work with depth cameras called CPPFL, based on the PPF descriptor from [1]. This proposed descriptor takes advantage of color information and groups it more effectively and lightly than the CPPF descriptor from [2], which uses the color information too. Also, it is proposed as an alternative descriptor called CPPFL+, which differs in the construction taking advantage of the same concept of grouping colors, so it gains a “plus” in speed. This change makes the descriptor more efficient compared to PPF and CPPF descriptors. Optimizing the object recognition process [3], it can reach a rate of ten frames per second or more depending on the size of the object. The proposed descriptor is more tolerant to illuminations changes since the hue of a color is more relevant than the other components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: Proceedings of the IEEE International Conference on Computer Vision. IEEE, pp. 998–1005 (2010)

    Google Scholar 

  2. Choi, C., Christensen, H.I.: RGB-D object pose estimation in unstructured environments. Robot. Auton. Syst. 75, 595–613 (2016)

    Article  Google Scholar 

  3. Hinterstoisser, S., Lepetit, V., Rajkumar, N., Konolige, K.: Going further with point pair features. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 834–848. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_51

    Chapter  Google Scholar 

  4. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer Science & Business Media (2010). https://doi.org/10.1007/978-1-84882-935-0

  5. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  6. Saïdani, A., Echi, A.K.: Pyramid histogram of oriented gradient for machine-printed/handwritten and Arabic/Latin word discrimination. In: 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR). IEEE, pp. 267–272 (2014)

    Google Scholar 

  7. Bo, L., Ren, X., Fox, D.: Unsupervised feature learning for RGB-D based object recognition. In: Experimental Robotics. Springer, pp. 387–402 (2013). https://doi.org/10.1007/978-3-319-00065-7_27

  8. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Rob. Res. 34(4–5), 705–724 (2015)

    Article  Google Scholar 

  9. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, 2009. ICRA 2009. Citeseer, pp. 3212–3217 (2009)

    Google Scholar 

  10. Salti, S., Tombari, F., Di Stefano, L.: Shot: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)

    Article  Google Scholar 

  11. Wang, W., Chen, L., Liu, Z., Kühnlenz, K., Burschka, D.: Textured/textureless object recognition and pose estimation using RGB-D image. J. Real-Time Image Proc. 10(4), 667–682 (2015)

    Article  Google Scholar 

  12. Tombari, F., Salti, S.: 3D keypoint detection benchmark. https://vision.deis.unibo.it/keypoints3d/ (2011) [updated 2018–12-15]

Download references

Aknowledgement

M. E. LOAIZA acknowledges the financial support of the CONCYTEC – BANCO MUNDIAL Project “Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovación Tecnológica” 8682-PE, through its executing unit PROCIENCIA, within the framework of the call E041-01, Contract No. 038-2018-FONDECYT-BM-IADT-AV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Ronald Istaña Chipana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Istaña Chipana, L.R., Loaiza Fernández, M.E. (2021). Color Point Pair Feature Light. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13018. Springer, Cham. https://doi.org/10.1007/978-3-030-90436-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90436-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90435-7

  • Online ISBN: 978-3-030-90436-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics