Skip to main content

An Overview of Different Approaches and Bioreactors for Xylitol Production by Fermentation

  • Chapter
  • First Online:

Abstract

Due to the many beneficial characteristics and possibilities of industrial applications of xylitol, an adequate addressing of engineering strategies is fundamental, aiming profitable yield and productivity of fermentative processes at industrial scale. In the developing biotechnological route, the different kinds of bioreactors and operation modes must be considered and systematically evaluated, mainly taking into account the particularities of the bioprocess, e.g., control of aeration rate and the presence of microbial inhibitors in the medium. At bench and pilot scale, stirred tank reactors have been reported for xylitol production using yeasts; however, other alternatives as bubble columns and fluidized bed reactors were also evaluated. Additionally, regarding bioreactor operation modes, batch, fed-batch, and continuous processes have been studied, presenting each one their specific advantages and concerns. Commonly, xylitol batch fermentation allows the study of process variables with profit-making control of operational conditions, while fed-batch and continuous processes are interesting alternatives to enhance process productivity. In this chapter, the main bioreactors and operation modes reported for xylitol production are discussed, including authors' investigations presenting specific approaches. The focus was a review exploring an overview of different approaches for fermentative methods for xylitol production, besides current techniques, e.g., applied to metabolic engineering, also discussing advancements and future perspectives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott AP, D'Agostino C, Davis SJ, Gladden LF, Mantle MD (2016) Do group 1 metal salts form deep eutectic solvents?. Phys Chem Chem Phys 18(36):25528–25537. https://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp05880a/unauth

  • Abd Rahman NH, Md. Jahim J, Abdul Munaim MS, et al (2020) Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme Microb Technol 135:109495. https://doi.org/10.1016/j.enzmictec.2019.109495

    Article  CAS  PubMed  Google Scholar 

  • Acosta Martínez E, Silva SS, Felipe MG (2000) Effect of the oxygen transfer coefficient on xylitol production from sugarcane bagasse hydrolysate by continuous stirred-tank reactor fermentation. In: Twenty-First Symposium on Biotechnology for Fuels and Chemicals (pp 633–641). Humana Press, Totowa, NJ. https://link.springer.com/chapter/10.1007/978-1-4612-1392-5_48

  • Agblevor F, Waleed K (2005) Water extraction of steam exploded Xylo-Oligosaccharides for Xylitol production. In: The 2005 annual meeting

    Google Scholar 

  • Ahmad I, Shim WY, Jeon WY, Yoon BH, Kim JH (2012) Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess Biosyst Eng 35(1):199–204. https://doi.org/10.1007/s00449-011-0641-9

    Article  CAS  PubMed  Google Scholar 

  • Antunes FAF, Santos JCD, Cunha MAAD, Brumano LP, Milessi TSDS, Terán-Hilares R et al (2017) Biotechnological production of xylitol from biomass. In: Production of Platform Chemicals from Sustainable Resources (pp 311–342). Springer, Singapore. https://link.springer.com/chapter/10.1007/978-981-10-4172-3_10

  • Antunes FAF, Thomé LC, Santos JC, Ingle AP, Costa CB, Dos Anjos V, Bell MJV, Rosa CA, Da Silva SS (2021) Multi-scale study of the integrated use of the carbohydrate fractions of sugarcane bagasse for ethanol and xylitol production. Renew Energy 163(2021):1343–1355

    Article  CAS  Google Scholar 

  • Arcaño YD, García ODV, Mandelli D, Carvalho WA, Pontes LAM (2020) Xylitol: A review on the progress and challenges of its production by chemical route. Catal Today 344:2–14. https://doi.org/10.1016/j.cattod.2018.07.060

    Article  CAS  Google Scholar 

  • Arruda PV et al (2017) Scale up of xylitol production fromsugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii FTI 20037. J Ind Eng Chem 47:297–302

    Article  CAS  Google Scholar 

  • Atzmüller D, Ullmann N, Zwirzitz A (2020) Identification of genes involved in xylose metabolism of Meyerozyma guilliermondii and their genetic engineering for increased xylitol production. Amb Express 10(1):1–11. https://link.springer.com/article/10.1186/s13568-020-01012-8

  • Baptista SL, Cunha JT, Romaní A, Domingues L (2018) Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. Biores Technol 267:481–491. https://doi.org/10.1016/j.biortech.2018.07.068

    Article  CAS  Google Scholar 

  • Baptista SL, Carvalho LC, Romaní A, Domingues L (2020) Development of a sustainable bioprocess based on green technologies for xylitol production from corn cob. Ind Crops Prod 156. https://doi.org/10.1016/j.indcrop.2020.112867

  • Bianchini IDA, Sene L, da Cunha MAA, Felipe MDGDA (2021) Short-term adaptation strategy improved Xylitol production by Candida guilliermondii on Sugarcane Bagasse Hemicellulosic Hydrolysate. BioEnergy Res 1–13

    Google Scholar 

  • Bonfiglio F, Cagno M, Yamakawa CK, Mussatto SI (2021) Fernando Production of xylitol and carotenoids from switchgrass and Eucalyptus globulus hydrolysates obtained by intensified steam explosion pretreatment. Ind Crop Prod 170:113800

    Google Scholar 

  • Branco RF, Santos JC, Murakami LY, Mussatto SI, Dragone G, Silva SS (2007) Xylitol production in a bubble column bioreactor: influence of the aeration rate and immobilized system concentration. Process Biochem 42(2):258–262

    Article  CAS  Google Scholar 

  • Buhner J, Agblevor FA (2004) Effect of detoxification of dilute-acid corn fiber hydrolysate on xylitol production. Appl Biochem Biotechnol 119(1):13–30. https://doi.org/10.1385/ABAB:119:1:13

    Article  CAS  PubMed  Google Scholar 

  • Canilha L, e Silva JBA, Felipe MG, Carvalho W (2003) Batch xylitol production from wheat straw hemicellulosic hydrolysate using Candida guilliermondii in a stirred tank reactor. Biotechnol Lett 25(21):1811-1814. https://doi.org/10.1023/A:1026288705215

  • Carneiro CVG, Almeida JR (2019) Xylitol production: identification and comparison of new producing yeasts. Microorganisms 7(11):484. https://doi.org/2076-2607/7/11/484

    Google Scholar 

  • Carvalho W, Silva SS, Converti A, Vitolo M (2002a) Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol Bioeng 79(2):165–169. https://doi.org/10.1002/bit.10319

    Article  CAS  PubMed  Google Scholar 

  • Carvalho W, Silva SS, Santos JC, Converti A (2003) Xylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzyme Microb Technol 32(5):553–559. https://www.sciencedirect.com/science/article/pii/S0141022903000073?casa_token=1hyNu23tgjAAAAAA:aqVsSwYSgd5DZBpu-10NLzknhaFPiT0u14hR9rYLsBzpvJdIVkx4REiF7uaZtMAgT6Nt-CzrlwF_

  • Carvalho W, Santos JC, Canilha L, e Silva JBA, Felipe MG, Mancilha IM, Silva SS (2004) A study on xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Ca-alginate entrapped cells in a stirred tank reactor. Process Biochem 39(12):2135-2141. https://doi.org/10.1016/j.procbio.2003.11.021

  • Cortivo PRD, Hickert LR, Rosa CA, Ayub MAZ (2020) Conversion of fermentable sugars from hydrolysates of soybean and oat hulls into ethanol and xylitol by Spathaspora hagerdaliae UFMG-CM-Y303. Ind Crops Prod 146:112218

    Article  CAS  Google Scholar 

  • Cunha JT, Soares PO, Romaní A, Thevelein JM, Domingues L (2019) Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnol Biofuels 12(1):1–14. https://doi.org/10.1186/s13068-019-1360-8

  • Dasgupta D, Bandhu S, Adhikari DK, Ghosh D (2017) Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiol Res 197:9–21. https://doi.org/10.1016/j.micres.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta D, Kurmi AK, Adhikari DK, Ghosh D (2020) Xylitol production from lignocellulosic pentosans using Kluyveromyces marxianus: kinetic modelling of yeast growth and fermentation. Biofuels 11(3):309–319

    CAS  Google Scholar 

  • De Albuquerque TL, da Silva Jr IJ, de Macedo GR, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49(11):1779–1789. https://doi.org/10.1016/j.procbio.2014.07.010

    Article  CAS  Google Scholar 

  • De Arruda PV, de Cássia Lacerda Brambilla Rodrigues R, da Silva DDV, de Almeida Felipe MDG (2011) Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate. Biodegradation 22(4):815–822. https://link.springer.com/article/10.1007/s10532-010-9397-1

  • De Faveri D, Perego P, Converti A, Del Borghi M (2002) Xylitol recovery by crystallization from synthetic solutions and fermented hemicellulose hydrolyzates. Chem Eng J 90(3):291–298

    Article  Google Scholar 

  • De Freitas Branco R, Dos Santos JC, Da Silva SS (2011) A novel use for sugarcane bagasse hemicellulosic fraction: xylitol enzymatic production. Biomass Bioenergy 35(7):3241-3246

    Google Scholar 

  • De Mohamad NL, Mustapa Kamal SM, Mokhtar MN (2015) Xylitol biological production: a review of recent studies. Food Rev Intl 31(1):74–89

    Article  CAS  Google Scholar 

  • Dorantes-Landa DN, Cocotle-Ronzón Y, Morales-Cabrera MA, Hernández-Martínez E (2020) Modelling of the xylitol production from sugarcane bagasse by immobilized cells. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6394

    Article  Google Scholar 

  • Du C, Li Y, Zong H et al (2020a) Bioresource Technology Production of bioethanol and xylitol from non-detoxified corn cob via a two- stage fermentation strategy. Bioresour Technol 310:123427. https://doi.org/10.1016/j.biortech.2020.123427

    Article  CAS  PubMed  Google Scholar 

  • Du C, Li Y, Zong H, Yuan T, Yuan W, Jiang Y (2020b) Production of bioethanol and xylitol from non-detoxified corn cob via a two-stage fermentation strategy. Biores Technol 310:123427. https://doi.org/10.1016/j.biortech.2020.123427

    Article  CAS  Google Scholar 

  • Faria LFF, Pereira N Jr, Nobrega R (2002) Xylitol production from D-xylose in a membrane bioreactor. Desalination 149(1–3):231–236. https://doi.org/10.1016/S0011-9164(02)00766-X

    Article  CAS  Google Scholar 

  • Felipe Hernandez-Pérez AF et al (2019) Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Rev Biotechnol 1549–1571. https://www.tandfonline.com/doi/abs/10.1080/07388551.2019.1640658

  • Franceschin G, Sudiro M, Ingram T, Smirnova I, Brunner G, Bertucco A (2011) Conversion of rye straw into fuel and xylitol: a technical and economical assessment based on experimental data. Chem Eng Res Des 89(6):631–640. https://doi.org/10.1016/j.cherd.2010.11.001

    Article  CAS  Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part I: The biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74:277–281. https://doi.org/10.1007/s00253-006-0761-3

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Zhang R, Li Z, Dai D, Li C, Zhou X (2013) A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Biores Technol 128:547–552. https://www.sciencedirect.com/science/article/pii/S0960852412016641?casa_token=ib7ezjfBu_4AAAAA:Al--3Fs3jzVAdOkV5iJK05uyDaYHFyEFkVrZDpPIRLQ3DxbBi-y9OkaCg9SblcBGAka9QqPymIgT

  • Hernandez-Escoto H, Rodriguez-Gomez D, Morales-Rodriguez R (2014) Process design and control of a xylitol production reactor. Comput Aided Chem Eng 33:757–762. https://doi.org/10.1016/B978-0-444-63456-6.50127-7

    Article  CAS  Google Scholar 

  • Hernández-Pérez AF, Costa IAL, Silva DDV, Dussán KJ, Villela TR, Canettieri EV, Felipe MGA (2016) Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresour Technol 200:1085–1088

    Google Scholar 

  • Hickert LR et al (2013) Simultaneous saccharification and co fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Biores Technol 143:112–116

    Article  CAS  Google Scholar 

  • Hong, Y., Dashtban, M., Kepka, G., Chen, S., & Qin, W. (2014). Overexpression of D-xylose reductase (xyl1) gene and antisense inhibition of D-xylulokinase (xyiH) gene increase xylitol production in Trichoderma reesei. BioMed research international2014. https://doi.org/10.1155/2014/169705

  • Hovnanyan KO, Gasparyan HV, Marutyan SV, Navasardyan LH, Trchounian AH (2019) Comparative structural analysis of yeasts Candida Guilliermondii NP-4 Cultivated with and without nitrogen source. Proceedings of the YSU b: Chemical and Biological Sciences 53(248):53–58

    Google Scholar 

  • Iverson A, Garza E, Manow R, Wang J, Gao Y, Grayburn S, Zhou S (2016) Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21. BMC Syst Biol 10(1):1–10. https://doi.org/10.1186/s12918-016-0276-1

    Article  CAS  Google Scholar 

  • Jain, V., & Ghosh, S. (2021). Biotransformation of lignocellulosic biomass to xylitol: an overview. Biomass Conversion and Biorefinery, 1–19.doi/ https://doi.org/10.1007/s13399-021-01904-0

  • Jain H, Mulay S (2014) A review on different modes and methods for yielding a pentose sugar: xylitol. Int J Food Sci Nutr 65(2):135–143. https://doi.org/10.3109/09637486.2013.845651

    Article  CAS  PubMed  Google Scholar 

  • Jeevahan JJ, Chandrasekaran M, Venkatesan SP, Sriram V, Joseph GB, Mageshwaran G, Durairaj RB (2020) Scaling up difficulties and commercial aspects of edible films for food packaging: a review. Trends Food Sci Technol 100:210–222. https://doi.org/10.1016/j.tifs.2020.04.014

    Article  CAS  Google Scholar 

  • Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35(1):191–198. https://doi.org/10.1007/s00449-011-0618-8

    Article  CAS  PubMed  Google Scholar 

  • Jeon WY, Shim WY, Lee SH, Choi JH, Kim JH (2013) Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Bioprocess Biosyst Eng 36(6):809–817. https://doi.org/10.1007/s00449-013-0907-5

    Article  CAS  PubMed  Google Scholar 

  • Jin YS, Cruz J, Jeffries TW (2005) Xylitol production by a Pichia stipitis D-xylulokinase mutant. Appl Microbiol Biotechnol 68(1):42–45. https://doi.org/10.1007/s00253-004-1854-5

    Article  CAS  PubMed  Google Scholar 

  • Jin LQ, Yang B, Xu W, Chen XX, Jia DX, Liu ZQ, Zheng YG (2019) Immobilization of recombinant Escherichia coli whole cells harboring xylose reductase and glucose dehydrogenase for xylitol production from xylose mother liquor. Biores Technol 285:121344. https://doi.org/10.1016/j.biortech.2019.121344

    Article  CAS  Google Scholar 

  • Jofre FM, Hernández-Pérez AF, Santos JC dos, Felipe M das G de A (2021) Use of dry yeast biomass as a new approach for detoxification of hemicellulosic hydrolysates aiming to xylitol production. Ind Crops Prod 170. https://doi.org/10.1016/j.indcrop.2021.113812

  • Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:1–10. https://doi.org/10.1186/1754-6834-6-16

    Article  CAS  Google Scholar 

  • Kamer DDA, Palabiyik I, Işık NO, Akyuz F, Demirci AS, Gumus T (2019) Effect of confectionery solutes on the rheological properties of fish (Oncorhynchus mykiss) gelatin. LWT 101:499–505

    Article  CAS  Google Scholar 

  • Kelly C, Jones O, Barnhart C, Lajoie C (2008) Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis. In: Biotechnology for fuels and chemicals. Humana Press, pp 615–626. https://doi.org/10.1007/978-1-60327-526-2_57

  • Kim JH, Han KC, Koh YH, Ryu YW, Seo JH (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotechnol 29(1):16–19. https://doi.org/10.1038/sj.jim.7000257

    Article  CAS  PubMed  Google Scholar 

  • Ko BS, Kim DM, Yoon BH, Bai S, Lee HY, Kim JH, Kim IC (2011) Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Biotech Lett 33(6):1209–1213. https://doi.org/10.1007/s10529-011-0558-z

    Article  CAS  Google Scholar 

  • Krishnan S, Suzana BN, Wahid ZA, Nasrullah M, Munaim MSA, Din MFBM, Li YY (2020) Optimization of operating parameters for xylose reductase separation through ultrafiltration membrane using response surface methodology. Biotechnol Rep 27:e00498

    Google Scholar 

  • Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21(4):377–397. https://www.sciencedirect.com/science/article/pii/S0740002003001072?casa_token=iCeq_gu_UzsAAAAA:_gPRiJB0tzOpS6aW9fV_FVE9IHuCYw5YKz9xoHR-XgvqFr5gZS7eVCskYjwcsDIy0Q5Ed8cjIP-C

  • Kumar V, Krishania M, Preet Sandhu P, et al (2018) Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresour Technol 251:416–419.https://doi.org/10.1016/j.biortech.2017.11.039

  • Kwon DH, Kim MD, Lee TH, Oh YJ, Ryu YW, Seo JH (2006) Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 43(1–4):86–89. https://www.sciencedirect.com/science/article/pii/S1381117706002013?casa_token=0_QYD2DMl6EAAAAA:f3r2fhezjWZhIyFL7uGa3fAtkDWqxpU-rsf0z7dpNbpgfC-dsCky_GiRLar1j-oe9l9ZJECBKCod

  • Liu S, He H, Fu X, Yuan T, Wang Q, Yang G, Zhang H, Ding M, Liao C (2019) Xylitol production from prehydrolysis liquor of Kraft-based dissolving pulp by Candida tropicalis. BioResources 14:21–30

    Article  CAS  Google Scholar 

  • López-Linares JC, Romero I, Cara C et al (2018) Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour Technol 247:736–743. https://doi:https://doi.org/10.1016/j.biortech.2017.09.139

  • Lugani Y, Sooch BS (2020) Fermentative production of xylitol from a newly isolated xylose reductase producing Pseudomonas putida BSX-46. LWT 134:109988. https://doi.org/10.1016/J.LWT.2020.109988

    Article  CAS  Google Scholar 

  • Manaf SFA et al (2018) Fractionation of oil palm fronds (OPF) hemicellulose using dilute nitric acid for fermentative production of xylitol. Ind Crop Prod 115:615

    Google Scholar 

  • Mareczky Z, Fehér A, Fehér C, Barta Z, Réczey K (2016) Effects of pH and aeration conditions on xylitol production by Candida and Hansenula yeasts. Periodica Polytech Chem Eng 60(1):54–59

    Article  CAS  Google Scholar 

  • Martı́nez EA, Silva SS, e Silva JBA, Solenzal AI, Felipe MG (2003). The influence of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolysate by C. guilliermondii. Process Biochem 38(12):1677–1683.

    Google Scholar 

  • Martínez EA, Santos JAF (2012) Influence of the use of rice bran extract as a source of nutrients on xylitol production. Food Sci Technol 32:308–313

    Article  Google Scholar 

  • Matrawy AA, Khalil AI, Marey HS, Embaby AM (2021) Biovalorization of the raw agro-industrial waste rice husk through directed production of xylanase by Thermomyces lanuginosus strain A3–1 DSM 105773: a statistical sequential model. Biomass Convers Biorefinery 11(5):2177–2189. https://doi.org/10.1016/j.jenvman.2016.08.059

    Article  CAS  Google Scholar 

  • Moraes EDJC, Silva DDV, Dussán KJ, Tesche LZ, de Almeida Silva JB, Rai M, de Almeida Felipe MDG (2020) Xylitol-sweetener production from barley straw: optimization of acid hydrolysis condition with the energy consumption simulation. Waste Biomass Valorization 11(5):1837–1849

    Article  CAS  Google Scholar 

  • Moran LV, Sampath H, Kochunov P, Hong LE (2013) Brain circuits that link schizophrenia to high risk of cigarette smoking. Schizophr Bull 39(6):1373–1381

    Article  PubMed  Google Scholar 

  • Mussatto SI (2012) Application of xylitol in food formulations and benefits for health. In: d-Xylitol (pp 309–323). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-31887-0_14

  • Mussatto SI (2014) Brewer’s spent grain: a valuable feedstock for industrial applications. J Sci Food Agric 94(7):1264–1275

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI, Roberto IC (2002) Xylitol: a sweetner with benefits for human health. Revista Brasileira De Ciências Farmacêuticas 38(4):401–413

    Article  CAS  Google Scholar 

  • Mussatto SI et al (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb Technol 43(2):124–129

    Article  CAS  Google Scholar 

  • Narisetty V, Castro E, Durgapal S et al (2021) High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates. Bioresour Technol 342:126005. https://doi.org/10.1016/j.biortech.2021.126005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh EJ, Ha SJ, Kim SR, Lee WH, Galazka JM, Cate JH, Jin YS (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng 15:226–234

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Choudhary V, Kumar A, Biswas D, Mondal AK, Sahoo DK (2013) Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Biores Technol 147:449–455

    Article  CAS  Google Scholar 

  • Pappu SMJ, Gummadi SN (2018) Effect of cosubstrate on xylitol production by Debaryomyces nepalensis NCYC 3413: A cybernetic modelling approach. Process Biochem 69:12–21. https://doi.org/10.1016/j.procbio.2018.03.023

    Article  CAS  Google Scholar 

  • Pereira RS, Mussatto SI, Roberto IC (2011) Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J Ind Microbiol Biotechnol 38(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Bibbins B, Salgado JM, Torrado A, Aguilar-Uscanga MG, Domínguez JM (2013) Culture parameters affecting xylitol production by Debaryomyces hansenii immobilized in alginate beads. Process Biochem 48(3):387–397

    Article  CAS  Google Scholar 

  • Pérez-Bibbins B, de Souza Oliveira RP, Torrado A, Aguilar-Uscanga MG, Domínguez JM (2014) Study of the potential of the air lift bioreactor for xylitol production in fed-batch cultures by Debaryomyces hansenii immobilized in alginate beads. Appl Microbiol Biotechnol 98(1):151–161

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Bibbins B, Torrado-Agrasar A, Salgado JM, Mussatto SI, Domínguez JM (2016) Xylitol production in immobilized cultures: a recent review. Crit Rev Biotechnol 36(4):691–704

    Article  PubMed  CAS  Google Scholar 

  • Ping Y, Ling HZ, Song G, Ge JP (2013) Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem Eng J 75:86–91

    Article  CAS  Google Scholar 

  • Pronk JT, Meesters PJW, Van Dijken JP, Bos P, Kuenen JG (1990) Heterotrophic growth of Thiobacillus acidophilus in batch and chemostat cultures. Arch Microbiol 153(4):392–398

    Article  CAS  Google Scholar 

  • Rafiqul ISM, Sakinah AM (2013) Processes for the production of xylitol—a review. Food Rev Intl 29(2):127–156

    Article  CAS  Google Scholar 

  • Raj K, Krishnan C (2020) Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis. Renew Energy 153:392–403. https://doi.org/10.1016/j.renene.2020.02.042

    Article  CAS  Google Scholar 

  • Ramirez OS, Escoto HH (2021). Enhancement of Xylitol production by fed-batch policy designed through stochastic search. Chem Eng Trans 86:1009–1014. https://doi.org/10.3303/CET2186169

  • Rao LV, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Biores Technol 213:299–310

    Article  CAS  Google Scholar 

  • Rao VN, Malu TJ, Cheralathan KK, Sakar M, Pitchaimuthu S, Rodríguez-González V, Shankar MV (2021) Light-driven transformation of biomass into chemicals using photocatalysts–Vistas and challenges. J Environ Manage 284:111983. https://doi.org/10.1016/j.biortech.2015.07.106

    Article  CAS  Google Scholar 

  • Rodrigues RCLB, Felipe MGA, Roberto IC, Vitolo M (2003) Batch xylitol production by Candida guilliermondii FTI 20037 from sugarcane bagasse hemicellulosic hydrolyzate at controlled pH values. Bioprocess Biosyst Eng 26(2):103–107. https://link.springer.com/article/10.1007/s00449-003-0332-2

  • Salgado JM, Rodríguez N, Cortés S, Domínguez JM (2012) Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings. New Biotechnol 29(3):421–427. https://www.sciencedirect.com/science/article/abs/pii/S1871678411001609

  • Santos JC, Carvalho W, Silva SS, Converti A (2003) Xylitol production from sugarcane bagasse hydrolyzate in fluidized bed reactor. Effect of air flow rate. Biotechnol Progress 19(4):1210–1215. https://aiche.onlinelibrary.wiley.com/doi/abs/10.1021/bp034042d?casa_token=zpaExejItK8AAAAA:VwfNTZJqa0de0sBXGCoqclwJQdscUGjtEkYR6BeBVItnM3xpR7iX_nGfckJkxGOg59URGe10rDWz2UkJDw

  • Santos JC, Pinto ÍR, Carvalho W, Mancilha IM, Felipe MG, Silva SS (2005) Sugarcane bagasse as raw material and immobilization support for xylitol production. App Biochem Biotechnol 122(1):673–683. https://doi.org/10.1385/ABAB:122:1-3:0673

  • Sarrouh B, Da Silva SS (2013) Repeated batch cell-immobilized system for the biotechnological production of xylitol as a renewable green sweetener. Appl Biochem Biotechnol 169(7):2101–2110

    Article  CAS  PubMed  Google Scholar 

  • Sarrouh BF, dos Santos DT, da Silva SS (2007) Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads. Biotechnol J 2(6):759–763. https://doi.org/10.1002/biot.200600207

    Article  CAS  Google Scholar 

  • Silva-Fernandes T, Santos JC, Hasmann F, Rodrigues RCLB, Izario Filho HJ, Felipe MGA (2017) Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries. Biores Technol 243:384–392

    Article  CAS  Google Scholar 

  • Soleimani M, Tabil L (2013) Interaction of medium detoxification/supplementation and cell recycling in fermentative xylitol production. Biocatal Biotransform 31(4):208–216

    Article  CAS  Google Scholar 

  • De Souza Queiroz S, Jofre FM, dos Santos HA, Hernández-Pérez AF, de Almeida Felipe MDG (2021) Xylitol and ethanol co-production from sugarcane bagasse and straw hemicellulosic hydrolysate supplemented with molasses. Biomass Convers Biorefinery 1–10

    Google Scholar 

  • Su B, Wu M, Lin J, Yang L (2013) Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars. Biotech Lett 35(11):1781–1789

    Article  CAS  Google Scholar 

  • Tamburini E, Costa S, Marchetti MG, Pedrini11ì P (2015) High productivity fed-batch fermentation of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules 5(3):1979–1989

    Google Scholar 

  • Tochampa W, Sirisansaneeyakul S, Vanichsriratana W, Srinophakun P, Bakker HH, Chisti Y (2005) A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst Eng 28(3):175–183

    Article  CAS  PubMed  Google Scholar 

  • Tochampa W, Sirisansaneeyakul S, Vanichsriratana W, Srinophakun P, Bakker HHC, Wannawilai S, Chisti Y (2015) Optimal control of feeding in fed-batch production of xylitol. Ind Eng Chem Res 54(7):1992–2000. https://doi.org/10.1021/ie5032937

    Article  CAS  Google Scholar 

  • Unrean P, Ketsub N (2018a) Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Ind Crops Prod 123:238–246

    Article  CAS  Google Scholar 

  • Unrean P, Ketsub N (2018b) Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Ind Crop Prod 123:238–246. https://doi.org/10.1016/j.indcrop.2018b.06.071

    Google Scholar 

  • Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA (2015) Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr 55(11):1514–1528

    Article  CAS  PubMed  Google Scholar 

  • Vallejos ME, Chade M, Mereles EB, Bengoechea DI, Brizuela JG, Felissia FE, Area MC (2016) Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind Crops Prod 91:161–169

    Article  CAS  Google Scholar 

  • Villarreal MLM, Prata AMR, Felipe MGA, Silva JAE (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40(1):17–24. https://www.sciencedirect.com/science/article/pii/S0141022906002237?casa_token=KxSxser_zvQAAAAA:0sh3Dcf6HQ40iULIVcTBCshq-qI05v0C3ii20nXAgpHH8RnBuqLDFBby5zetUFT4pCkyaRB9IMNk

  • Visscher F, Van der Schaaf J, Nijhuis TA, Schouten JC (2013) Rotating reactors–a review. Chem Eng Res Design 91(10):1923–1940. https://www.sciencedirect.com/science/article/pii/S0263876213002980?casa_token=YKv2edqwHl0AAAAA:JGRNhgB4g9HSyO9oJUo2zXxO8LGIALPtAfu1BaV-pBGuB38AXhr0EqPB--mZT4uQZ7Ky9cCfHzu4

  • Wang M, Chen J, Lin X, Huang L, Li H, Wen C, He Z (2021) High humidity aggravates the severity of arthritis in collagen-induced arthritis mice by upregulating xylitol and L-pyroglutamic acid. Arthritis Res Ther 23(1):1–12

    Article  CAS  Google Scholar 

  • Wannawilai S, Chisti Y, Sirisansaneeyakul S (2017) A model of furfural-inhibited growth and xylitol production by Candida magnoliae TISTR 5663. Food Bioprod Process 105:129–140

    Article  CAS  Google Scholar 

  • Xu Y, Chi P, Bilal M, Cheng H (2019) Biosynthetic strategies to produce xylitol: an economical venture. Appl Microbiol Biotechnol 103(13):5143–5160

    Article  CAS  PubMed  Google Scholar 

  • Yang BX, Xie CY, Xia ZY, Wu YJ, Gou M, Tang YQ (2020) Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. FEMS Yeast Res 20(8); foaa061

    Google Scholar 

  • Zahed O, Jouzani GS, Abbasalizadeh S, Khodaiyan F, Tabatabaei M (2016) Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiol 61(3):179–189

    Google Scholar 

  • Zhang J, Zhang B, Wang D, Gao X, Hong J (2015) Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Biores Technol 175:642–645

    Google Scholar 

  • Zhang B et al (2016) Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in energineered Kluyveromyces marxianus. Biores Technol 216:227–239

    Article  CAS  Google Scholar 

  • Zhang H, Yun J, Zabed H, Yang M, Zhang G, Qi Y, Qi X (2018a) Production of xylitol by expressing xylitol dehydrogenase and alcohol dehydrogenase from Gluconobacter thailandicus and co-biotransformation of whole cells. Bioresour Technol 257:223–228

    Google Scholar 

  • Zhang H et al (2018b) Production of xylitol by expressing xylitol dehydrogenase and alcohol dehydrogenase from Gluconobacter thailandicus and co-biotransformation of whole cells. Biores Technol 257(1):223–228

    Article  CAS  Google Scholar 

  • Zheng J, Liu M, Wu F, Zhang L (2021) Enabling easy and efficient hydrogen release below 80 °C from NaBH4 with multi-hydroxyl xylitol. Int J Hydrogen Energy 46(55):28156–28165

    Article  CAS  Google Scholar 

  • Zhuang Y, Dong X, Tao S, Wang Y, Yang W, Zhang L (2021) Origami-based bionic reactor. Ind Eng Chem Res 60(11):4279–4289. https://pubs.acs.org/doi/abs/10.1021/acs.iecr.0c06066?casa_token=leo7zHQ3F-8AAAAA:6eMmHAv6DNM1DSuPQFXUfCavke-a8LEF88v6po1qQJKebYqrO5fg9zwFSnAOf_gqlYiUkmb2pNgV3DYxzQ

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio C. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prado, C.A. et al. (2022). An Overview of Different Approaches and Bioreactors for Xylitol Production by Fermentation. In: de Almeida Felipe, M.d.G., Chandel, A.K. (eds) Current Advances in Biotechnological Production of Xylitol. Springer, Cham. https://doi.org/10.1007/978-3-031-04942-2_5

Download citation

Publish with us

Policies and ethics