Skip to main content

Machine Learning of a Pair of Charged Electrically Particles Inside a Closed Volume: Electrical Oscillations as Memory and Learning of System

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 507))

Included in the following conference series:

  • 909 Accesses

Abstract

In this paper the problem of two charged particles inside a frustum is faced through the principles of Machine Learning compacted by the criteria of Tom Mitchell. In essence, the relevant equations from the classical electrodynamics are presented. Once the power is derived, then the systematic errors that might be intrinsic are implemented. Thus, these errors drives the evolution of system inside the frustum in both: experience and learning. In the scenario of electrical oscillations because the repulsion forces, the errors would have oscillatory behavior, fact that is favourable to the system in the sense that acquires memory and improves its learning of measurements done in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics (1964)

    Google Scholar 

  2. Feynman, R.P., Brown, L.M. (ed.): Feynman’s Thesis: A New Approach to Quantum Theory 1942/1948 (2005)

    Google Scholar 

  3. Schueler, J.: Green’s Functions and Their Applications to Quantum Mechanics. https://sites.math.washington.edumorrow/33611/papers/jeff.pdf

  4. Huang, K.: Quantum Field Theory: From Operators to Path Integrals. Wiley, New York (1998)

    Book  Google Scholar 

  5. Chao-Hua, Yu., Gao, F., Chenghuan Liu, D., Huynh, M.R., Wang, J.: Quantum algorithm for visual tracking. Phys. Rev. A 99, 022301 (2019)

    Article  Google Scholar 

  6. Bishop, C.M. (ed.): Pattern Recognition and Machine Learning. ISS, Springer, New York (2006). https://doi.org/10.1007/978-0-387-45528-0

    Book  MATH  Google Scholar 

  7. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997). ISBN 0-07-042807-7. OCLC 36417892

    Google Scholar 

  8. Wright, K.: Bringing quantum to machine learning. Physics 13, 179 (2020)

    Article  Google Scholar 

  9. Haug, T., Dumke, R., Kwek, L.-C., Miniatura, C., Amico, L.: Machine-learning engineering of quantum currents. Phys. Rev. Res. 3, 013034 (2021)

    Article  Google Scholar 

  10. Hsu, B.C., Berrondo, M., Van Huele, J.-F.S.: Stern-Gerlach dynamics with quantum propagators. Phys. Rev. A 83, 012109 (2011)

    Article  Google Scholar 

  11. Bonato, C.A., Thomaz, M.T., Malbouisson, A.P.C.: Equivalence of the propagator of quasistatical solutions and the quantum harmonic oscillator. Phys. Rev. A 39, 2225 (1989)

    Article  MathSciNet  Google Scholar 

  12. Alageshan, J.K., Verma, A.K., Bec, J., Pandit, R.: Machine learning strategies for path-planning microswimmers in turbulent flows. Phys. Rev. E 101, 043110 (2020)

    Article  Google Scholar 

  13. Hartle, J.B., Laflamme, R., Marolf, D.: Conservation laws in the quantum mechanics of closed systems. Phys. Rev. D 51, 7007 (1995)

    Article  MathSciNet  Google Scholar 

  14. Hioe, F.T., Eberly, J.H.: N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47, 838 (1981)

    Article  MathSciNet  Google Scholar 

  15. Mackey, H.J., Sybert, J.R., Hight, R.D.: Magnetomorphic oscillations in the electrical conductivity of cadmium cylinders. Phys. Rev. B 1, 2385 (1970)

    Article  Google Scholar 

  16. Fredkin, D.R., Wilson, A.: Collective oscillations in a simple metal. II. Electrical conductivity. Phys. Rev. B 18, 6676 (1978)

    Google Scholar 

  17. Teitsworth, S.W., Westervelt, R.M., Haller, E.E.: Nonlinear oscillations and chaos in electrical breakdown in Ge. Phys. Rev. Lett. 51, 825 (1983)

    Article  Google Scholar 

  18. Collins, J., Howe, K., Nachman, B.: Anomaly detection for resonant new physics with machine learning. Phys. Rev. Lett. 121, 241803 (2018)

    Article  Google Scholar 

  19. Ghosh, A., Nachman, B., Whiteson, D.: Uncertainty-aware machine learning for high energy physics. Phys. Rev. D 104, 056026 (2021)

    Article  Google Scholar 

  20. https://www.wolframalpha.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huber Nieto-Chaupis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nieto-Chaupis, H. (2022). Machine Learning of a Pair of Charged Electrically Particles Inside a Closed Volume: Electrical Oscillations as Memory and Learning of System. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-10464-0_16

Download citation

Publish with us

Policies and ethics