Skip to main content

Multi-task Learning with Modular Reinforcement Learning

  • Conference paper
  • First Online:
From Animals to Animats 16 (SAB 2022)

Abstract

The ability to learn compositional strategies in multi-task learning and to exert them appropriately is crucial to the development of artificial intelligence. However, there exist several challenges: (i) how to maintain the independence of modules in learning their own sub-tasks; (ii) how to avoid performance degradation in situations where modules’ reward scales are incompatible; (iii) how to find the optimal composite policy for the entire set of tasks. In this paper, we introduce a Modular Reinforcement Learning (MRL) framework that coordinates the competition and the cooperation between separate modules. Furthermore, a selective update mechanism enables the learning system to align incomparable reward scales in different modules. Moreover, the learning system follows a “joint policy” to calculate actions’ preferences combined with their responsibility for the current task. We evaluate the effectiveness of our approach on a classic food-gathering and predator-avoidance task. Results show that our approach has better performance than previous MRL methods in learning separate strategies for sub-tasks, is robust to modules with incomparable reward scales, and maintains the independence of the learning in each module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernard, J.A.: Don’t forget the little brain: a framework for incorporating the cerebellum into the understanding of cognitive aging. Neurosci. Biobehav. Rev. 137, 104639 (2022)

    Article  Google Scholar 

  2. Botvinick, M.M.: Hierarchical models of behavior and prefrontal function. Trends Cogn. Sci. 12(5), 201–208 (2008)

    Article  Google Scholar 

  3. Doya, K., Samejima, K., Katagiri, K.I., Kawato, M.: Multiple model-based reinforcement learning. Neural Comput. 14(6), 1347–1369 (2002)

    Article  Google Scholar 

  4. Esteban, D., Rozo, L., Caldwell, D.G.: Hierarchical reinforcement learning for concurrent discovery of compound and composable policies. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1818–1825. IEEE (2019)

    Google Scholar 

  5. Gatti, D., Rinaldi, L., Ferreri, L., Vecchi, T.: The human cerebellum as a hub of the predictive brain. Brain Sci. 11(11), 1492 (2021)

    Article  Google Scholar 

  6. Gupta, V., Anand, D., Paruchuri, P., Kumar, A.: Action selection for composable modular deep reinforcement learning. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pp. 565–573 (2021)

    Google Scholar 

  7. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  8. Logan, G.D., Crump, M.J.: Hierarchical control of cognitive processes: the case for skilled typewriting. In: Psychology of Learning and Motivation, vol. 54, pp. 1–27. Elsevier (2011)

    Google Scholar 

  9. Nagabandi, A., Kahn, G., Fearing, R.S., Levine, S.: Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7559–7566. IEEE (2018)

    Google Scholar 

  10. Narendra, K.S., Balakrishnan, J., Ciliz, M.K.: Adaptation and learning using multiple models, switching, and tuning. IEEE Control Syst. Mag. 15(3), 37–51 (1995)

    Article  Google Scholar 

  11. Nowlan, S.J., Hinton, G.E.: Evaluation of adaptive mixtures of competing experts. In: NIPS, vol. 3, pp. 774–780 (1990)

    Google Scholar 

  12. Samejima, K., Doya, K., Kawato, M.: Inter-module credit assignment in modular reinforcement learning. Neural Netw. 16(7), 985–994 (2003)

    Article  Google Scholar 

  13. Simpkins, C., Isbell, C.: Composable modular reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4975–4982 (2019)

    Google Scholar 

  14. Smith, B.J., Read, S.J.: Modeling incentive salience in Pavlovian learning more parsimoniously using a multiple attribute model. Cogn. Affect. Behav. Neurosci. 22, 244–257 (2021). https://doi.org/10.3758/s13415-021-00953-2

    Article  Google Scholar 

  15. Sodhani, S., Zhang, A., Pineau, J.: Multi-task reinforcement learning with context-based representations. In: International Conference on Machine Learning, pp. 9767–9779. PMLR (2021)

    Google Scholar 

  16. Sprague, N., Ballard, D.: Multiple-goal reinforcement learning with modular Sarsa(0) (2003)

    Google Scholar 

  17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  18. Wang, J.X., et al.: Learning to reinforcement learn. arXiv preprint arXiv:1611.05763 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, J., Alexandre, F. (2022). Multi-task Learning with Modular Reinforcement Learning. In: Cañamero, L., Gaussier, P., Wilson, M., Boucenna, S., Cuperlier, N. (eds) From Animals to Animats 16. SAB 2022. Lecture Notes in Computer Science(), vol 13499. Springer, Cham. https://doi.org/10.1007/978-3-031-16770-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16770-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16769-0

  • Online ISBN: 978-3-031-16770-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics