Skip to main content

Clustering in Tractography Using Autoencoders (CINTA)

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13722))

Abstract

Clustering tractography streamlines is an important step to characterize the brain white matter structural connectivity. Numerous methods have been proposed to group whole-brain tractography streamlines into anatomically coherent bundles. However, the time complexity, or the initial streamline sorting in conventional methods, or still, using supervised deep learning models, may limit the results and/or restrict the versatility of the methods. In this work, we propose an autoencoder-based method for clustering tractography streamlines. CINTA, Clustering in Tractography using Autoencoders, is trained on unlabelled data, uses a single autoencoder model, and does not require any distance thresholding parameter. It obtains excellent classification scores on synthetic datasets, achieving a 0.97 F1-score on the clinical-style, realistic ISMRM 2015 Tractography Challenge dataset. Similarly, CINTA obtains anatomically reliable results on in vivo human brain tractography data. CINTA offers a time-efficient bundling framework, as its running time is linear with the streamline count.

P.-M. Jodoin and M. Descoteaux—Co-senior authors. These authors contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  2. Bertò, G., et al.: Classifyber, a robust streamline-based linear classifier for white matter bundle segmentation. Neuroimage 224, 117402 (2021). https://doi.org/10.1016/j.neuroimage.2020.117402

    Article  Google Scholar 

  3. Chen, Y., et al.: Deep fiber clustering: anatomically informed unsupervised deep learning for fast and effective white matter parcellation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 497–507. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_47

    Chapter  Google Scholar 

  4. Côté, M.A., Girard, G., Boré, A., Garyfallidis, E., Houde, J.C., Descoteaux, M.: Tractometer: Towards validation of tractography pipelines. Medical Image Analysis 17(7), 844–857 (2013). https://doi.org/10.1016/j.media.2013.03.009, special Issue on the 2012 Conference on Medical Image Computing and Computer Assisted Intervention

  5. Fillard, P., et al.: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56(1), 220–234 (2011). https://doi.org/10.1016/j.neuroimage.2011.01.032

    Article  Google Scholar 

  6. Garyfallidis, E., et al.: Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170, 283–295 (2018). https://doi.org/10.1016/j.neuroimage.2017.07.015. Segmenting the Brain

    Article  Google Scholar 

  7. Glasser, M.F., et al.: The human connectome project’s neuroimaging approach. Nat. Neurosci. 19(9), 1175–1187 (2016). https://doi.org/10.1038/nature18933

    Article  Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  9. Guevara, P., et al.: Robust clustering of massive tractography datasets. Neuroimage 54(3), 1975–1993 (2011). https://doi.org/10.1016/j.neuroimage.2010.10.028

    Article  Google Scholar 

  10. Gupta, V., Thomopoulos, S.I., Corbin, C.K., Rashid, F.M., Thompson, P.M.: FiberNet 2.0: an automatic neural network based tool for clustering white matter fibers in the brain. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI), pp. 708–711. Washington, DC, USA (04 2018). https://doi.org/10.1109/ISBI.2018.8363672

  11. Lam, P.D.N., Belhomme, G., Ferrall, J., Patterson, B., Styner, M., Prieto, J.C.: TRAFIC: Fiber tract classification using deep learning. In: Proceedings of the International Society for Optical Engineering (SPIE). vol. 10574, p. 1057412. The international society for optics and photonics (SPIE) (2018). https://doi.org/10.1117/12.2293931

  12. Legarreta, J.H., et al.: Filtering in tractography using autoencoders (FINTA). Medical Image Analysis 72, 102126 (2021). https://doi.org/10.1016/j.media.2021.102126

  13. Li, B., et al.: Neuro4Neuro: a neural network approach for neural tract segmentation using large-scale population-based diffusion imaging. Neuroimage (2020). https://doi.org/10.1016/j.neuroimage.2020.116993

    Article  Google Scholar 

  14. Liu, W., et al.: Volumetric segmentation of white matter tracts with label embedding. Neuroimage 250, 118934 (2022). https://doi.org/10.1016/j.neuroimage.2022.118934

    Article  Google Scholar 

  15. Maddah, M., Grimson, W.E.L., Warfield, S.K., Wells, W.M.: A unified framework for clustering and quantitative analysis of white matter fiber tracts. Med. Image Anal. 12(2), 191–202 (2008). https://doi.org/10.1016/j.media.2007.10.003

    Article  Google Scholar 

  16. Maier-Hein, K.H., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1349), 1–13 (2017). https://doi.org/10.1038/s41467-017-01285-x

    Article  Google Scholar 

  17. O’Donnell, L.J., Westin, C.F.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging 26(11), 1562–1575 (2007). https://doi.org/10.1109/TMI.2007.906785

    Article  Google Scholar 

  18. Siless, V., Chang, K., Fischl, B., Yendiki, A.: AnatomiCuts: hierarchical clustering of tractography streamlines based on anatomical similarity. Neuroimage 166, 32–45 (2018). https://doi.org/10.1016/j.neuroimage.2017.10.058

    Article  Google Scholar 

  19. Ugurlu, D., Firat, Z., Ture, U., Unal, G.: Supervised classification of white matter fibers based on neighborhood fiber orientation distributions using an ensemble of neural networks. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C.M.W. (eds.) MICCAI 2019. MV, pp. 143–154. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05831-9_12

    Chapter  Google Scholar 

  20. Vázquez, A., et al.: FFClust: fast fiber clustering for large tractography datasets for a detailed study of brain connectivity. NeuroImage 220, 117070 (2020). https://doi.org/10.1016/j.neuroimage.2020.117070

  21. Wassermann, D., et al.: The white matter query language: a novel approach for describing human white matter anatomy. Brain Structure and Function 221(9), 4705–4721 (2016). https://doi.org/10.1007/s00429-015-1179-4

  22. Wasserthal, J., Neher, P.F., Maier-Hein, K.H.: TractSeg - fast and accurate white matter tract segmentation. NeuroImage 183, 239–253 (2018)

    Google Scholar 

  23. Wu, Y., Hong, Y., Ahmad, S., Lin, W., Shen, D., Yap, P.-T.: Tract dictionary learning for fast and robust recognition of fiber bundles. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 251–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_25

    Chapter  Google Scholar 

  24. Zhang, F., Cetin Karayumak, S., Hoffmann, N., Rathi, Y., Golby, A.J., O’Donnell, L.J.: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation. Medical Image Analysis 65, 101761 (2020). https://doi.org/10.1016/j.media.2020.101761

  25. Zhang, F., et al.: Whole brain white matter connectivity analysis using machine learning: an application to autism. Neuroimage 172, 826–837 (2018). https://doi.org/10.1016/j.neuroimage.2017.10.029

    Article  Google Scholar 

  26. Zhang, Y., et al.: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage 52(4), 1289–1301 (2010). https://doi.org/10.1016/j.neuroimage.2010.05.049

    Article  Google Scholar 

  27. Zhong, S., Chen, Z., Egan, G.: Auto-encoded latent representations of white matter streamlines. In: 28th Virtual Conference & Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM). International Society for Magnetic Resonance in Medicine (2020), abstract #0850

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Centre d’Imagerie Médicale de l’Université de Sherbrooke (CIMUS); the Axe d’Imagerie Médicale (AIM) of the Centre de Recherche du CHUS (CRCHUS); and the Réseau de Bio-Imagerie du Québec (RBIQ)/Quebec Bio-imaging Network (QBIN) (FRSQ - Réseaux de recherche thématiques File: 35450). This research was enabled in part by support provided by the Digital Research Alliance of Canada Advanced Research Computing service (alliancecan.ca) and Calcul Québec (calculquebec.ca). We also thank the research chair in Neuroinformatics of the Université de Sherbrooke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Haitz Legarreta .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Misclassified Streamlines

Figure 6 shows the split of the ISMRM 2015 Tractography Challenge right FPT bundle as classified by the autoencoder-based bundling procedure. As it detaches from the figure, the misclassified streamlines belong to bundles (right CST and right POPT) that are closely related to it in anatomical and/or spatial terms. This reinforces the assumption that streamlines that are close to each other in anatomical space are also located in neighboring regions in the latent space learned by the CINTA autoencoder. Hence, CINTA provides an anatomically reliable ground for bundling purposes with minimal disagreement.

Fig. 6.
figure 6

Right FPT bundle of the ISMRM 2015 Tractography Challenge dataset as labelled by the autoencoder-based bundling procedure: (a) right FPT; (b) right CST in the reference set; (c) right POPT in the reference set; (d) right FPT true positives; (e) false positive right FPT streamlines belonging to the right CST; (f) false positive right FPT streamlines belonging to the right POPT. All sagittal right views.

1.2 Time Computational Requirements

To demonstrate CINTA’s computational time performance, six (6) tractograms containing 20 000, 40 000, 100 000, 200 000, 600 000, 1 000 000 streamlines were generated on the ISMRM 2015 Tractography Challenge dataset using local probabilistic tracking. Implausible streamlines were filtered following the method proposed in [12]. The time required to bundle each resulting tractogram was measured for three (3) runs, and the mean and standard deviation values computed. Only the time required for bundling was measured, excluding I/O operation time. Time tests were performed on a conventional desktop machine (Intel(R) Xeon(R) W-2133 CPU @3.60 GHz 6 core processor; 16 G RAM; NVIDIA GeForce GTX 1080 Ti 12 G graphics card). As shown in figure 7, CINTA requires a linear time to bundle streamlines. Similarly, its time demands are comparable to other competitive deep learning-based methods reported in literature [3], requiring slightly less than 200 s to bundle almost 600 000 streamlines.

Fig. 7.
figure 7

Computational time performance for bundling different ISMRM 2015 Tractography Challenge dataset tractogram sizes with CINTA. Due to the vertical scale and reduced standard deviation values, the latter are hardly noticeable around the mean value. Streamline counts are expressed with SI prefixes and engineering notation. Horizontal axis labels correspond to filtered tractogram streamline counts.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Legarreta, J.H., Petit, L., Jodoin, PM., Descoteaux, M. (2022). Clustering in Tractography Using Autoencoders (CINTA). In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2022. Lecture Notes in Computer Science, vol 13722. Springer, Cham. https://doi.org/10.1007/978-3-031-21206-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21206-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21205-5

  • Online ISBN: 978-3-031-21206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics