Skip to main content

N-3 Polyunsaturated Fatty Acid and Neuroinflammation in Aging: Role in Cognition

  • Chapter
  • First Online:
Pharma-Nutrition

Abstract

The innate immune system of the brain is principally composed of microglial cells, which protects neurons against noxious agents or lesions thanks to their non-inflammatory phagocytic activity. In the healthy brain, microglia are highly motile and thoroughly interact with neurons either by physical contact or through specific peptides, chemokines, and cytokines. In response to inflammatory insult, microglial cells get activated and produce inflammatory cytokines that act specifically through receptors expressed in the brain, leading to the development of altered cognition. These behavioral alterations cease along with the synthesis of brain cytokines. When the level of expression of these cytokines remains high, they become toxic to neurons possibly leading to neuronal death, as observed in neurodegenerative disorders such as Alzheimer’s disease. Omega-3 (n-3) type polyunsaturated fatty acids (PUFAs) are essential nutrients and fundamental components of neuronal and glial cell membranes. Additionally, they have immunomodulatory properties. They accumulate in the brain during the perinatal period in a dietary supply-dependent fashion. Their brain levels diminish with age, but can be corrected by a diet enriched in n-3 PUFAs. The increasing exposure of the population to diets unbalanced in n-3 PUFAs could contribute to the deleterious effects of inflammatory cytokines in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aisen PS, Davis KL, Berg JD, Schafer K, Campbell K, Thomas RG et al (2000) A randomized controlled trial of prednisone in Alzheimer's disease. Alzheimer's Disease Cooperative Study. Neurology 54:588–593

    CAS  PubMed  Google Scholar 

  2. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152

    CAS  PubMed  Google Scholar 

  3. Annenkov A (2009) The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis. Mol Neurobiol 40:195–215

    CAS  PubMed  Google Scholar 

  4. Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G et al (2003) Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13:826–834

    CAS  PubMed  Google Scholar 

  5. Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW et al (2011) Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32:2030–2044

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Barrientos RM, Frank MG, Hein AM, Higgins EA, Watkins LR, Rudy JW et al (2009) Time course of hippocampal IL-1 beta and memory consolidation impairments in aging rats following peripheral infection. Brain Behav Immun 23:46–54

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Barrientos RM, Frank MG, Watkins LR, Maier SF (2010) Memory impairments in healthy aging: Role of aging-induced microglial sensitization. Aging Dis 1:212–231

    PubMed Central  PubMed  Google Scholar 

  8. Barrientos RM, Frank MG, Watkins LR, Maier SF (2012) Aging-related changes in neuroimmune-endocrine function: implications for hippocampal-dependent cognition. Horm Behav 62:219–227

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Barrientos RM, Higgins EA, Biedenkapp JC, Sprunger DB, Wright-Hardesty KJ, Watkins LR et al (2006) Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol Aging 27:723–732

    PubMed  Google Scholar 

  10. Batchelor PE, Porritt MJ, Martinello P, Parish CL, Liberatore GT, Donnan GA et al (2002) Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge. Mol Cell Neurosci 21:436–453

    CAS  PubMed  Google Scholar 

  11. Battista D, Ferrari CC, Gage FH, Pitossi FJ (2006) Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 23:83–93

    PubMed  Google Scholar 

  12. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    CAS  PubMed  Google Scholar 

  13. Bazan NG (2013) The docosanoid neuroprotectin D1 induces homeostatic regulation of neuroinflammation and cell survival. Prostaglandins Leukot Essent Fatty Acids 88:127–129

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263

    CAS  PubMed  Google Scholar 

  15. Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal 'On' and 'Off' signals control microglia. Trends Neurosci 30:596–602

    CAS  PubMed  Google Scholar 

  16. Biscaro B, Lindvall O, Tesco G, Ekdahl CT, Nitsch RM (2012) Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease. Neurodegener Dis 9:187–198

    CAS  PubMed  Google Scholar 

  17. Blackmore DG, Golmohammadi MG, Large B, Waters MJ, Rietze RL (2009) Exercise increases neural stem cell number in a growth hormone-dependent manner, augmenting the regenerative response in aged mice. Stem Cells 27:2044–2052

    CAS  PubMed  Google Scholar 

  18. Breitner JC, Welsh KA, Helms MJ, Gaskell PC, Gau BA, Roses AD et al (1995) Delayed onset of Alzheimer's disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 16:523–530

    CAS  PubMed  Google Scholar 

  19. Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N et al (2006) Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest 116:905–915

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Calder PC (2001) Polyunsaturated fatty acids, inflammation, and immunity. Lipids 36:1007–1024

    CAS  PubMed  Google Scholar 

  21. Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83:1505S–1519S

    CAS  PubMed  Google Scholar 

  22. Calon F, Cole G (2007) Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot Essent Fatty Acids 77:287–293

    CAS  PubMed  Google Scholar 

  23. Capuron L, Moranis A, Combe N, Cousson-Gelie F, Fuchs D, De Smedt-Peyrusse V et al (2009) Vitamin E status and quality of life in the elderly: influence of inflammatory processes. Br J Nutr 102:1390–1394

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Capuron L, Schroecksnadel S, Feart C, Aubert A, Higueret D, Barberger-Gateau P et al (2011) Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry 70:175–182

    CAS  PubMed  Google Scholar 

  25. Carrie I, Smirnova M, Clement M, De JD, Frances H, Bourre JM (2002) Docosahexaenoic acid-rich phospholipid supplementation: effect on behavior, learning ability, and retinal function in control and n-3 polyunsaturated fatty acid deficient old mice. Nutr Neurosci 5:43–52

    CAS  PubMed  Google Scholar 

  26. Chhor V, Le Charpentier T, Lebon S, Ore MV, Celador IL, Josserand J et al (2013) Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 32:70–85

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Cho SH, Sun B, Zhou Y, Kauppinen TM, Halabisky B, Wes P et al (2011) CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 286:32713–32722

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Cortese GP, Barrientos RM, Maier SF, Patterson SL (2011) Aging and a peripheral immune challenge interact to reduce mature brain-derived neurotrophic factor and activation of TrkB, PLCgamma1, and ERK in hippocampal synaptoneurosomes. J Neurosci 31:4274–4279

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25:9275–9284

    CAS  PubMed  Google Scholar 

  30. Dantzer R, Bluthe RM, Gheusi G, Cremona S, Laye S, Parnet P et al (1998) Molecular basis of sickness behavior. Annu NY Acad Sci 856:132–138

    CAS  Google Scholar 

  31. Dantzer R, Bluthe RM, Laye S, Bret-Dibat JL, Parnet P, Kelley KW (1998) Cytokines and sickness behavior. In: McCann SM, Lipton JM, Sternberg EM, Chrousos GP, Gold PW, Smith CC (eds) Neuroimmunomodulation: molecular aspects, integrative systems, and clinical advances (p. 586–590). Annals of the New York Academy of Sciences, 840. New York, USA: New York Academy of Sciences

    Google Scholar 

  32. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    CAS  PubMed  Google Scholar 

  34. De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Laye S (2008) Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J Neurochem 105:296–307

    PubMed  Google Scholar 

  35. Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84:932–939

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Drapeau E, Nora Abrous D (2008) Stem cell review series: role of neurogenesis in age-related memory disorders. Aging Cell 7:569–589

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Farzaneh-Far R, Harris WS, Garg S, Na B, Whooley MA (2009) Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in patients with stable coronary artery disease: The Heart and Soul Study. Atherosclerosis 205:538–543

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Favreliere S, Perault MC, Huguet F, De Javel D, Bertrand N, Piriou A et al (2003) DHA-enriched phospholipid diets modulate age-related alterations in rat hippocampus. Neurobiol Aging 24:233–243

    CAS  PubMed  Google Scholar 

  39. Feart C, Peuchant E, Letenneur L, Samieri C, Montagnier D, Fourrier-Reglat A et al (2008) Plasma eicosapentaenoic acid is inversely associated with severity of depressive symptomatology in the elderly: data from the Bordeaux sample of the Three-City Study. Am J Clin Nutr 87:1156–1162

    CAS  PubMed  Google Scholar 

  40. Feart C, Torres MJ, Samieri C, Jutand MA, Peuchant E, Simopoulos AP et al (2011) Adherence to a Mediterranean diet and plasma fatty acids: data from the Bordeaux sample of the Three-City Study. Br J Nutr 106:149–158

    CAS  PubMed  Google Scholar 

  41. Fedorova I, Salem N Jr (2006) Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essent Fatty Acids 75:271–289

    CAS  PubMed  Google Scholar 

  42. Fenn AM, Henry CJ, Huang Y, Dugan A, Godbout JP (2012) Lipopolysaccharide-induced interleukin (IL)-4 receptor-alpha expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav Immun 26:766–777

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F et al (2006) Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 91:439–446

    CAS  PubMed  Google Scholar 

  44. Gamoh S, Hashimoto M, Sugioka K, Shahdat Hossain M, Hata N, Misawa Y et al (1999) Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 93:237–241

    CAS  PubMed  Google Scholar 

  45. Gemma C, Bachstetter AD, Cole MJ, Fister M, Hudson C, Bickford PC (2007) Blockade of caspase-1 increases neurogenesis in the aged hippocampus. Eur J Neurosci 26:2795–2803

    PubMed  Google Scholar 

  46. Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA et al (2013) Sustained interleukin-1beta overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer's mouse model. J Neurosci 33:5053–5064

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Girard S, Brough D, Lopez-Castejon G, Giles J, Rothwell NJ, Allan SM (2013) Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia 61:813–824

    PubMed Central  PubMed  Google Scholar 

  49. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW et al (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 19:1329–1331

    CAS  PubMed  Google Scholar 

  51. Golan H, Levav T, Mendelsohn A, Huleihel M (2004) Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex 14:97–105

    CAS  PubMed  Google Scholar 

  52. Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T et al (2007) A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32:1106–1115

    CAS  PubMed  Google Scholar 

  53. Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585:3798–3805

    CAS  PubMed  Google Scholar 

  54. Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA (2006) The age-related attenuation in long-term potentiation is associated with microglial activation. J Neurochem 99:1263–1272

    CAS  PubMed  Google Scholar 

  55. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    CAS  PubMed  Google Scholar 

  56. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci 95:10896–10901

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Heneka MT, O'Banion MK, Terwel D, Kummer MP (2010) Neuroinflammatory processes in Alzheimer's disease. J Neural Transm 117:919–947

    CAS  PubMed  Google Scholar 

  58. Hong S, Lu Y, Yang R, Gotlinger KH, Petasis NA, Serhan CN (2007) Resolvin D1, protectin D1, and related docosahexaenoic acid-derived products: analysis via electrospray/low energy tandem mass spectrometry based on spectra and fragmentation mechanisms. J Am Soc Mass Spectrom 18:128–144

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Huang WL, King VR, Curran OE, Dyall SC, Ward RE, Lal N et al (2007) A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 130:3004–3019

    CAS  PubMed  Google Scholar 

  60. Jang E, Lee S, Kim JH, Seo JW, Lee WH, Mori K et al (2013) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 27:1176–1190

    CAS  PubMed  Google Scholar 

  61. Kalogeropoulos N, Panagiotakos DB, Pitsavos C, Chrysohoou C, Rousinou G, Toutouza M et al (2010) Unsaturated fatty acids are inversely associated and n-6/n-3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults. Clin Chim Acta 411:584–591

    CAS  PubMed  Google Scholar 

  62. Kiecolt-Glaser JK, Belury MA, Porter K, Beversdorf DQ, Lemeshow S, Glaser R (2007) Depressive symptoms, omega-6:omega-3 fatty acids, and inflammation in older adults. Psychosom Med 69:217–224

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Kiecolt-Glaser JK, Epel ES, Belury MA, Andridge R, Lin J, Glaser R et al (2013) Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun 28:16–24

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280

    CAS  PubMed  Google Scholar 

  65. Kiyota T, Ingraham KL, Swan RJ, Jacobsen MT, Andrews SJ, Ikezu T (2012) AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP + PS1 mice. Gene Ther 19:724–733

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Kohman RA, Rhodes JS (2013) Neurogenesis, inflammation and behavior. Brain Behav Immun 27:22–32

    CAS  PubMed  Google Scholar 

  67. Kuzumaki N, Ikegami D, Imai S, Narita M, Tamura R, Yajima M et al (2010) Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice. Synapse 64:721–728

    CAS  PubMed  Google Scholar 

  68. Labrousse VF, Costes L, Aubert A, Darnaudery M, Ferreira G, Amedee T et al (2009) Impaired interleukin-1beta and c-Fos expression in the hippocampus is associated with a spatial memory deficit in P2X(7) receptor-deficient mice. PLoS One 4:e6006

    PubMed Central  PubMed  Google Scholar 

  69. Labrousse VF, Nadjar A, Joffre C, Costes L, Aubert A, Gregoire S et al (2012) Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice. PLoS One 7:e36861

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Lafourcade M, Larrieu T, Mato S, Duffaud A, Sepers M, Matias I et al (2011) Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci 14:345–350

    CAS  PubMed  Google Scholar 

  71. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605

    CAS  PubMed  Google Scholar 

  72. Lalancette-Hebert M, Julien C, Cordeau P, Bohacek I, Weng YC, Calon F et al (2011) Accumulation of dietary docosahexaenoic acid in the brain attenuates acute immune response and development of postischemic neuronal damage. Stroke 42:2903–2909

    CAS  PubMed  Google Scholar 

  73. Lampron A, Elali A, Rivest S (2013) Innate immunity in the CNS: redefining the relationship between the CNS and its environment. Neuron 78:214–232

    CAS  PubMed  Google Scholar 

  74. Larrieu T, Madore C, Joffre C, Laye S (2012) Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice. J Physiol Biochem 68:671–681

    CAS  PubMed  Google Scholar 

  75. Laye S (2010) Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot Essent Fatty Acids 82:295–303

    CAS  PubMed  Google Scholar 

  76. Liu Z, Condello C, Schain A, Harb R, Grutzendler J (2010) CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis. J Neurosci 30:17091–17101

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Lukiw WJ, Bazan NG (2008) Docosahexaenoic acid and the aging brain. J Nutr 138:2510–2514

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Lynch AM, Loane DJ, Minogue AM, Clarke RM, Kilroy D, Nally RE et al (2007) Eicosapentaenoic acid confers neuroprotection in the amyloid-beta challenged aged hippocampus. Neurobiol Aging 28:845–855

    CAS  PubMed  Google Scholar 

  79. Lynch MA (1998) Age-related impairment in long-term potentiation in hippocampus: a role for the cytokine, interleukin-1 beta? Prog Neurobiol 56:571–589

    CAS  PubMed  Google Scholar 

  80. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A et al (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    CAS  PubMed  Google Scholar 

  81. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7:31–40

    CAS  PubMed  Google Scholar 

  82. Martin DS, Spencer P, Horrobin DF, Lynch MA (2002) Long-term potentiation in aged rats is restored when the age-related decrease in polyunsaturated fatty acid concentration is reversed. Prostaglandins Leukot Essent Fatty Acids 67:121–130

    CAS  PubMed  Google Scholar 

  83. McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE et al (2010) Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol 185:6317–6328

    CAS  PubMed Central  PubMed  Google Scholar 

  84. McGahon BM, Martin DS, Horrobin DF, Lynch MA (1999) Age-related changes in synaptic function: analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience 94:305–314

    CAS  PubMed  Google Scholar 

  85. McNamara RK, Jandacek R, Rider T, Tso P, Cole-Strauss A, Lipton JW (2010) Omega-3 fatty acid deficiency increases constitutive pro-inflammatory cytokine production in rats: relationship with central serotonin turnover. Prostaglandins Leukot Essent Fatty Acids 83:185–191

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Meydani SN, Endres S, Woods MM, Goldin BR, Soo C, Morrill-Labrode A et al (1991) Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J Nutr 121:547–555

    CAS  PubMed  Google Scholar 

  87. Mingam R, Moranis A, Bluthe RM, De Smedt-Peyrusse V, Kelley KW, Guesnet P et al (2008) Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur J Neurosci 28:1877–1886

    PubMed Central  PubMed  Google Scholar 

  88. Minogue AM, Lynch AM, Loane DJ, Herron CE, Lynch MA (2007) Modulation of amyloid-beta-induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. J Neurochem 103:914–926

    CAS  PubMed  Google Scholar 

  89. Mizwicki MT, Liu G, Fiala M, Magpantay L, Sayre J, Siani A et al (2013) 1alpha,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-beta phagocytosis and inflammation in Alzheimer's disease patients. J Alzheimers Dis 34:155–170

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    CAS  PubMed  Google Scholar 

  91. Moranis A, Delpech JC, De Smedt-Peyrusse V, Aubert A, Guesnet P, Lavialle M et al (2011) Long term adequate n-3 polyunsaturated fatty acid diet protects from depressive-like behavior but not from working memory disruption and brain cytokine expression in aged mice. Brain Behav Immun 26(5):721–31

    Google Scholar 

  92. Murray C, Sanderson DJ, Barkus C, Deacon RM, Rawlins JN, Bannerman DM et al (2012) Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiol Aging 33:603.e3–616.e3

    Google Scholar 

  93. Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC (2011) Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186:4973–4983

    CAS  PubMed  Google Scholar 

  94. Neumann J, Sauerzweig S, Ronicke R, Gunzer F, Dinkel K, Ullrich O et al (2008) Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci 28:5965–5975

    CAS  PubMed  Google Scholar 

  95. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    CAS  PubMed  Google Scholar 

  96. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    CAS  PubMed  Google Scholar 

  97. Perry VH, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4:103–112

    CAS  PubMed  Google Scholar 

  98. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201

    PubMed  Google Scholar 

  99. Petursdottir DH, Olafsdottir I, Hardardottir I (2002) Dietary fish oil increases tumor necrosis factor secretion but decreases interleukin-10 secretion by murine peritoneal macrophages. J Nutr 132:3740–3743

    CAS  PubMed  Google Scholar 

  100. Ransohoff RM, Liu L, Cardona AE (2007) Chemokines and chemokine receptors: multipurpose players in neuroinflammation. Int Rev Neurobiol 82:187–204

    CAS  PubMed  Google Scholar 

  101. Rees D, Miles EA, Banerjee T, Wells SJ, Roynette CE, Wahle KW et al (2006) Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men. Am J Clin Nutr 83:331–342

    CAS  PubMed  Google Scholar 

  102. Rezaie P, Male D (2002) Mesoglia & microglia—a historical review of the concept of mononuclear phagocytes within the central nervous system. J Hist Neurosci 11:325–374

    PubMed  Google Scholar 

  103. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA et al (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31:16241–16250

    CAS  PubMed  Google Scholar 

  104. Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 23:618–625

    CAS  PubMed  Google Scholar 

  105. Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    CAS  PubMed  Google Scholar 

  106. Samieri C, Feart C, Proust-Lima C, Peuchant E, Dartigues JF, Amieva H et al (2011) Omega-3 fatty acids and cognitive decline: modulation by ApoEepsilon4 allele and depression. Neurobiol Aging 32(2317):e13–e22

    PubMed  Google Scholar 

  107. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Seguin JA, Brennan J, Mangano E, Hayley S (2009) Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration. Neuropsychiatr Dis Treat 5:5–14

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science 298:789–791

    CAS  PubMed  Google Scholar 

  110. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Simopoulos AP (2001) n-3 fatty acids and human health: defining strategies for public policy. Lipids 36(Suppl):S83–S89

    CAS  PubMed  Google Scholar 

  113. Simopoulos AP (2006) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60:502–507

    CAS  PubMed  Google Scholar 

  114. Song C, Leonard BE, Horrobin DF (2004) Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats. Stress 7:43–54

    PubMed  Google Scholar 

  115. Song C, Manku MS, Horrobin DF (2008) Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. J Nutr 138:954–963

    CAS  PubMed  Google Scholar 

  116. Sparkman NL, Martin LA, Calvert WS, Boehm GW (2005) Effects of intraperitoneal lipopolysaccharide on Morris maze performance in year-old and 2-month-old female C57BL/6J mice. Behav Brain Res 159:145–151

    CAS  PubMed  Google Scholar 

  117. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440:1054–1059

    CAS  PubMed  Google Scholar 

  118. Streit WJ (2006) Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosci 29:506–510

    CAS  PubMed  Google Scholar 

  119. Titos E, Rius B, Gonzalez-Periz A, Lopez-Vicario C, Moran-Salvador E, Martinez-Clemente M et al (2011) Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol 187:5408–5418

    CAS  PubMed  Google Scholar 

  120. Tong N, Perry SW, Zhang Q, James HJ, Guo H, Brooks A et al (2000) Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. J Immunol 164:1333–1339

    CAS  PubMed  Google Scholar 

  121. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069

    CAS  PubMed  Google Scholar 

  122. Vereker E, Campbell V, Roche E, McEntee E, Lynch MA (2000) Lipopolysaccharide inhibits long term potentiation in the rat dentate gyrus by activating caspase-1. J Biol Chem 275:26252–26258

    CAS  PubMed  Google Scholar 

  123. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    CAS  PubMed  Google Scholar 

  125. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A (2008) Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 28:8138–8143

    CAS  PubMed  Google Scholar 

  126. Williamson LL, Bilbo SD (2013) Chemokines and the hippocampus: a new perspective on hippocampal plasticity and vulnerability. Brain Behav Immun 30:186–194

    CAS  PubMed  Google Scholar 

  127. Wu MD, Hein AM, Moravan MJ, Shaftel SS, Olschowka JA, O'Banion MK (2012) Adult murine hippocampal neurogenesis is inhibited by sustained IL-1beta and not rescued by voluntary running. Brain Behav Immun 26:292–300

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP (2010) Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav Immun 24:1190–1201

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Yehuda S, Rabinovitz S, Mostofsky DI (1999) Treatment with a polyunsaturated fatty acid prevents deleterious effects of Ro4-1284. Eur J Pharmacol 365:27–34

    CAS  PubMed  Google Scholar 

  130. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213

    CAS  PubMed  Google Scholar 

  131. Yirmiya R, Winocur G, Goshen I (2002) Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning. Neurobiol Learn Mem 78:379–389

    CAS  PubMed  Google Scholar 

  132. Zhang X, Mosser DM (2008) Macrophage activation by endogenous danger signals. J Pathol 214:161–178

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Amandine Lepinay for the drawing of microglia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Layé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Layé, S., Madore, C., Delpech, JC., Joffre, C., Nadjar, A. (2014). N-3 Polyunsaturated Fatty Acid and Neuroinflammation in Aging: Role in Cognition. In: Folkerts, G., Garssen, J. (eds) Pharma-Nutrition. AAPS Advances in the Pharmaceutical Sciences Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-06151-1_6

Download citation

Publish with us

Policies and ethics