Skip to main content

Circadian and Cyclic Environmental Determinants of Blood Pressure Patterning and Implications for Therapeutic Interventions

  • Chapter

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

Abstract

Blood pressure (BP) exhibits significant 24 h variation; in most normotensive and uncomplicated hypertensive persons, BP declines during the first half of nighttime sleep by 10–20 % from its daytime mean level, starts rising in the second half of sleep, further increases with commencement of diurnal activity, and peaks in the afternoon or early evening. Environmental 24 h cycles of temperature and noise; behavior-driven nyctohemeral patterning of food, liquid, and stimulant consumption, posture, mental and emotional stress, and physical activity; plus innate circadian rhythms in wake/sleep, autonomic nervous, hypothalamic–pituitary–adrenal, renal hemodynamic, opioid, renin–angiotensin–aldosterone, endothelial, and vasoactive peptide systems constitute the key determinants of the BP day/night variation. The current perspective is that the environmental and behavioral cycles are far more influential than the innate circadian ones in determining the BP nyctohemeral profile. Yet, the facts that the: (1) BP 24 h pattern of secondary hypertension, e.g., diabetes and other endocrine disorders, renal disease, heart failure, is different—BP fails to decline as expected during nighttime sleep typically due to pathological alteration of autonomic nervous system and other influential circadian rhythms, and (2) scheduling of conventional long-acting medications at bedtime, rather than in the morning, results in much better hypertension control and vascular risk reduction, presumably because highest drug concentration coincides closely with the peak of most key circadian determinants of the BP 24 h profile, indicates the endogenous rhythmic influences are of much greater importance than previously appreciated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABPM:

Ambulatory blood pressure monitoring

ACE:

Angiotensin converting enzyme

ACEIs:

Angiotensin converting enzyme inhibitor medications

ACTH:

Adrenocorticotropic hormone

ANG II:

Angiotensin II

ANP:

Atrial natriuretic peptide

ANS:

Autonomic nervous system

ARBs:

Angiotensin receptor blocker medications

AT1 receptor:

Angiotensin type-1 receptor

BP:

Blood pressure

BTCT:

Bedtime chronotherapy: full dose of one or more hypertension medications ingested at bedtime

CCBs:

Calcium-channel blocker medications

cGMP:

Cyclic guanosine monophosphate

CGRP:

Calcitonin gene-related peptide

Cl:

Chloride

CMTT:

Conventional morning time therapy: full dose of one or more hypertension medications ingested upon morning awakening

CO:

Cardiac output

CRH:

Corticotropin-releasing hormone

CV:

Cardiovascular

DBP:

Diastolic blood pressure

EEG:

Electroencephalography

ET-1:

Endothelin 1

FMD:

Brachial artery flow-mediated endothelium-dependent vasodilatation

GFR:

Glomerular filtration rate

h:

Hour

HOPE:

Heart outcomes prevention evaluation trial

HPAA:

Hypothalamic–pituitary–adrenal axis

HPTA:

Hypothalamic–pituitary–thyroid axis

HR:

Hazard ratio

ipRGC:

Intrinsic photoreceptive retinal ganglion cells

K:

Potassium

MAPEC trial:

Monitorización Ambulatoria para Predicción de Eventos Cardiovasculares (English: Ambulatory blood pressure monitoring for prediction of cardiovascular events)

min:

Minutes

MTCT:

Morning-time conventional therapy

Na:

Sodium

NO:

Nitric oxide

NREM:

Non-rapid eye movement sleep

PRA:

Plasma renin activity

RAAS:

Renin–angiotensin–aldosterone system

REM:

Rapid eye movement sleep

SBP:

Systolic blood pressure

SCN:

Suprachiasmatic nuclei

s:

Seconds

SNS:

Sympathetic nervous system

TPR:

Vascular total peripheral resistance

TRH:

Thyrotropin-releasing hormone

TSH:

Thyroid stimulating hormone

Ultradian:

Oscillations with period less than 20 h

References

  1. Hermida RC, Fernández JR, Ayala DE, Artemio A, Smolensky MH. Circadian rhythm of the double (rate-pressure) product in healthy normotensive young adults. Chronobiol Int. 2001;18:477–89.

    Article  Google Scholar 

  2. Reinberg A, Ghata J, Halberg F, Gervais P, Abulker C, Dupont J, et al. Rhythmes circadiens du pouls, de la pression areterielle, des excretions urinaires en 17-hydroxycorticosteroides, catecholamines et potassium chez l’hommé adulte sain, actif et au repos. Ann Endocrinol (Paris). 1970;31:277–87.

    CAS  Google Scholar 

  3. Tuck ML, Stern N, Sowers JR. Enhanced 24-hour norepinephrine and renin secretion in young patients with essential hypertension: relation with the circadian pattern of arterial blood pressure. Am J Cardiol. 1985;55:112–5.

    Article  PubMed  CAS  Google Scholar 

  4. Davies AB, Gould BA, Cashman PM, Raftery EB. Circadian rhythm of blood pressure in patients dependent on ventricular demand pacemakers. Br Heart J. 1984;52:93–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. James GD, Pickering TG. The influence of behavioral factors on the daily variation of blood pressure. Am J Hypertens. 1993;6(6 Pt 2):170S–3.

    PubMed  CAS  Google Scholar 

  6. Sica DA. What are the influences of salt, potassium, the sympathetic nervous system, and the renin-angiotensin system on the circadian variation in blood pressure? Blood Press Monit. 1999;4 Suppl 2:S9–16.

    PubMed  Google Scholar 

  7. Kario K, Schwartz JE, Pickering TG. Ambulatory physical activity as a determinant of diurnal blood pressure variation. Hypertension. 1999;34(4 Pt 1):685–91.

    Article  PubMed  CAS  Google Scholar 

  8. Hermida RC, Calvo C, Ayala DE, Mojón A, López JE. Relationship between physical activity and blood pressure in dipper and nondipper hypertensive patients. J Hypertens. 2002;20:1097–104.

    Article  PubMed  CAS  Google Scholar 

  9. Guessous I, Pruijm M, Ponte B, Ackermann D, Ehret G, Ansermot N, et al. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions. Hypertension. 2015;65:691–6.

    Article  PubMed  CAS  Google Scholar 

  10. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935e41.

    Article  CAS  Google Scholar 

  11. Albrecht U. Timing to perfection: the biology of central and peripheral clocks. Neuron. 2012;74:246e60.

    Article  CAS  Google Scholar 

  12. Arendt J. The pineal gland, circadian rhythms and photoperiodism. In: Redfern P, Lemmer B, editors. Physiology and pharmacology of biological rhythms, Berlin: Springer; Handbook Exp Pharmacol, vol. 125. 1997. p. 375–414.

    Chapter  Google Scholar 

  13. Ekmekcioglu C, Thalhammer T, Humpeler S, Mehrabi MR, Glogar HD, Hölzenbein T, et al. The melatonin receptor subtype MT2 is present in the human cardiovascular system. J Pineal Res. 2003;35:40–4.

    Article  PubMed  CAS  Google Scholar 

  14. Peliciari-Garcia RA, Zanquetta MM, Andrade-Silva J, Gomes DA, Barreto-Chaves ML, Cipolla-Neto J. Expression of circadian clock and melatonin receptors within cultured rat cardiomyocytes. Chronobiol Int. 2011;28:21–30.

    Article  PubMed  CAS  Google Scholar 

  15. Kitajima T, Kanbayashi T, Saitoh Y, Ogawa Y, Sugiyama T, Kaneko Y, et al. The effects of oral melatonin on the autonomic function in healthy subjects. Psychiatry Clin Neurosci. 2001;55:299–300.

    Article  PubMed  CAS  Google Scholar 

  16. Kachi T, Banerji TK, Quay WB. Quantitative cytological analysis of functional changes in adrenomedullary chromaffin cells in normal, sham-operated, and pinealectomized rats in relation to time of day: I. Nucleolar size. J Pineal Res. 1984;1:31–49.

    Article  PubMed  CAS  Google Scholar 

  17. Hermida RC, Ayala DE, Fernández JR, Artemio M, Smolensky MH, Fabbian F, et al. Administration-time-differences in effects of hypertension medications on ambulatory blood pressure regulation. Chronobiol Int. 2013;30:280–314.

    Article  PubMed  CAS  Google Scholar 

  18. Portaluppi F, Waterhouse J, Minors D. The rhythms of blood pressure in humans. Exogenous and endogenous components and implications for diagnosis and treatment. Ann N Y Acad Sci. 1996;783:1–9.

    Article  PubMed  CAS  Google Scholar 

  19. Clark LA, Denby L, Pregibon D, Harshfield GA, Pickering TG, Blank S, et al. A quantitative analysis of the effects of activity and time of day on the diurnal variations of blood pressure. J Chronic Dis. 1987;40:671–81.

    Article  PubMed  CAS  Google Scholar 

  20. Sundberg S, Kohvakka A, Gordin A. Rapid reversal of circadian blood pressure rhythm in shift workers. J Hypertens. 1988;6:393–6.

    Article  PubMed  CAS  Google Scholar 

  21. McGinty D, Szymusiak R. Neurobiology of sleep. In: Saunders NA, Sullivan CE, editors. Sleep and Breathing. 2nd ed. New York: Marcel Dekker; 1994. p. 1–26.

    Google Scholar 

  22. Smolensky MH, Tatar SE, Bergman SA, Losman JG, Barnard CN, Dacso CC, et al. Circadian rhythmic aspects of cardiovascular function. A review by chronobiologic statistical methods. Chronobiologia. 1976;3:337–71.

    PubMed  CAS  Google Scholar 

  23. Fabbian F, Smolensky MH, Tiseo R, Pala M, Manfredini R, Portaluppi F. Dipper and non-dipper blood pressure 24-hour patterns: circadian rhythm-dependent physiologic and pathophysiologic mechanisms. Chronobiol Int. 2013;30:17–30.

    Article  PubMed  Google Scholar 

  24. Haus E. Chronobiology in the endocrine system. Adv Drug Deliv Rev. 2007;59:985–1014.

    Article  PubMed  CAS  Google Scholar 

  25. Coccagna G, Mantovani M, Brignani F, Manzini A, Lugaresi E. Laboratory note. Arterial pressure changes during spontaneous sleep in man. Electroencephalogr Clin Neurophysiol. 1971;31:277–81.

    Article  PubMed  CAS  Google Scholar 

  26. Phillipson EA. Control of breathing during sleep. Am Rev Respir Dis. 1978;118:909–39.

    PubMed  CAS  Google Scholar 

  27. Van Someren E. More than a marker: Interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities. Chronobiol Int. 2000;17:313–54.

    Article  PubMed  Google Scholar 

  28. Krauchi K. The human sleep-wake cycle reconsidered from a thermoregulatory point of view. Physiol Behav. 2007;90:236–45.

    Article  PubMed  CAS  Google Scholar 

  29. Talan MI, Engel BT, Kawate R. Overnight increases in haematocrit: additional evidence for a nocturnal fall in plasma volume. Acta Physiol Scand. 1992;144:473–6.

    Article  PubMed  CAS  Google Scholar 

  30. Krauchi K, Cajochen C, Wirz-Justice A. Waking up properly: is there a role of thermoregulation in sleep inertia? J Sleep Res. 2004;13:121–7.

    Article  PubMed  Google Scholar 

  31. Suzuki Y, Kuwajima I, Mitani K, Miyao M, Uno A, Matsushita S, et al. The relation between blood pressure variation and daily physical activity in early morning surge in blood pressure. Nippon Ronen Igakkai Zasshi. 1993;30:841–8.

    Article  PubMed  CAS  Google Scholar 

  32. Furlan R, Guzzetti S, Crivellaro W, Dassi S, Tinelli M, Baselli G, et al. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation. 1990;81:537–47.

    Article  PubMed  CAS  Google Scholar 

  33. Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med. 1993;328:303–7.

    Article  PubMed  CAS  Google Scholar 

  34. van de Borne P, Nguyen H, Biston P, Linkowski P, Degaute JP. Effects of wake and sleep stages on the 24-h autonomic control of blood pressure and heart rate in recumbent men. Am J Physiol. 1994;266(2 Pt 2):H548–54.

    PubMed  Google Scholar 

  35. Lakatua DJ, Haus E, Halberg F, Halberg E, Wendt HW, Sackett-Lundeen LL, et al. Circadian characteristics of urinary epinephrine and norepinephrine from healthy young women in Japan and U.S.A. Chronobiol Int. 1986;3:189–95.

    Article  PubMed  CAS  Google Scholar 

  36. Linsell CR, Lightman SL, Mullen PE, Brown MJ, Causon RC. Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab. 1985;60:1210–5.

    Article  PubMed  CAS  Google Scholar 

  37. Sowers JR, Vlachakis N. Circadian variation in plasma dopamine levels in man. J Endocrinol Invest. 1984;7:341–5.

    Article  PubMed  CAS  Google Scholar 

  38. Kuchel O, Buu NT. Circadian variations of free and sulfoconjugated catecholamines in normal subjects. Endocr Res. 1985;11:17–25.

    Article  PubMed  CAS  Google Scholar 

  39. Yoshida T, Bray GA. Effects of food and light on norepinephrine turnover. Am J Physiol. 1988;254(5 Pt 2):R821–7.

    PubMed  CAS  Google Scholar 

  40. Kafka MS, Benedito MA, Roth RH, Steele LK, Wolfe WW, Catravas GN. Circadian rhythms in catecholamine metabolites and cyclic nucleotide production. Chronobiol Int. 1986;3:101–15.

    Article  PubMed  CAS  Google Scholar 

  41. Candito M, Pringuey D, Jacomet Y, Souetre E, Salvati E, Ardisson JL, et al. Circadian rhythm in plasma noradrenaline of healthy sleep-deprived subjects. Chronobiol Int. 1992;9:444–7.

    Article  PubMed  CAS  Google Scholar 

  42. Veerman DP, Imholz BP, Wieling W, Wesseling KH, van Montfrans GA. Circadian profile of systemic hemodynamics. Hypertension. 1995;26:55–9.

    Article  PubMed  CAS  Google Scholar 

  43. Mori H. Circadian variation of haemodynamics in patients with essential hypertension. J Hum Hypertens. 1990;4:384–9.

    PubMed  CAS  Google Scholar 

  44. Gordon RD, Wolfe LK, Island DP, Liddle GW. A diurnal rhythm in plasma renin activity in man. J Clin Invest. 1966;45:1587–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Katz FH, Romfh P, Smith JA. Diurnal variation of plasma aldosterone, cortisol and renin activity in supine man. J Clin Endocrinol Metab. 1975;40:125–34.

    Article  PubMed  CAS  Google Scholar 

  46. Liebau H, Manitius J. Diurnal and daily variations of PRA, plasma catecholamines and blood pressure in normotensive and hypertensive man. Contrib Nephrol. 1982;30:57–63.

    Article  PubMed  CAS  Google Scholar 

  47. Kool MJ, Wijnen JA, Derkx FH, Struijker Boudier HA, Van Bortel LM. Diurnal variation in prorenin in relation to other humoral factors and hemodynamics. Am J Hypertens. 1994;7:723–30.

    PubMed  CAS  Google Scholar 

  48. Veglio F, Pietrandrea R, Ossola M, Vignani A, Angeli A. Circadian rhythm of the angiotensin converting enzyme (ACE) concentration in serum of healthy adult subjects. Chronobiologia. 1987;14:21–5.

    PubMed  CAS  Google Scholar 

  49. Cugini P, Letizia C, Scavo D. The circadian rhythmicity of serum angiotensin converting enzyme; phase relation with the circadian cycle of plasma rennin and aldosterone. Chronobiologia. 1988;15:229–32.

    PubMed  CAS  Google Scholar 

  50. Gotoh M. Clinical significance of serum angiotensin I-converting enzyme in essential hypertension. Nihon Naibunpi Gakkai Zasshi. 1985;61:1341–57.

    PubMed  CAS  Google Scholar 

  51. Li H, Sun NL, Wang J, Liu AJ, Su DF. Circadian expression of clock genes and angiotensin II type 1 receptors in suprachiasmatic nuclei of sinoaortic-denervated rats. Acta Pharmacol Sin. 2007;28:484–92.

    Article  PubMed  CAS  Google Scholar 

  52. Stumpe KO, Kolloch R, Vetter H, Gramann W, Kruck F, Ressel C, et al. Acute and long-term studies of the mechanisms of action of beta-blocking drugs in lowering blood pressure. Am J Med. 1976;60:853–65.

    Article  PubMed  CAS  Google Scholar 

  53. Lightman SL, James VH, Linsell C, Mullen PE, Peart WS, Sever PS. Studies of diurnal changes in plasma renin activity, and plasma noradrenaline, aldosterone and cortisol concentrations in man. Clin Endocrinol (Oxf). 1981;14:213–23.

    Article  CAS  Google Scholar 

  54. Brandenberger G, Follenius M, Muzet A, Ehrhart J, Schieber JP. Ultradian oscillations in plasma renin activity: their relationships to meals and sleep stages. J Clin Endocrinol Metab. 1985;61:280–4.

    Article  PubMed  CAS  Google Scholar 

  55. Brandenberge G, Follenius M, Simon C, Ehrhart J, Libert JP. Nocturnal oscillations in plasma renin activity and REM-NREM sleep cycles in humans: a common regulatory mechanism? Sleep. 1988;11:242–50.

    Google Scholar 

  56. Nicholls MG, Espiner EA, Ikram H, Maslowski AH, Hamilton EJ, Bones PJ. Hormone and blood pressure relationships in primary aldosteronism. Clin Exp Hypertens A. 1984;6:1441–58.

    PubMed  CAS  Google Scholar 

  57. Stephenson LA, Kolka MA, Francesconi R, Gonzalez RR. Circadian variations in plasma renin activity, catecholamines and aldosterone during exercise in women. Eur J Appl Physiol. 1989;58:756–64.

    Article  CAS  Google Scholar 

  58. Richards AM, Nicholls MG, Espiner EA, Ikram H, Cullens M, Hinton D. Diurnal patterns of blood pressure, heart rate and vasoactive hormones in normal man. Clin Exp Hypertens A. 1986;8:153–66.

    PubMed  CAS  Google Scholar 

  59. Connell JM, Whitworth JA, Davies DL, Lever AF, Richards AM, Fraser R. Effects of ACTH and cortisol administration on blood pressure, electrolyte metabolism, atrial natriuretic peptide and renal function in normal man. J Hypertens. 1987;5:425–33.

    Article  PubMed  CAS  Google Scholar 

  60. Walker BR. Glucocorticoids and cardiovascular disease. Eur J Endocrinol. 2007;157:545–59.

    Article  PubMed  CAS  Google Scholar 

  61. Schnackenberg CG, Costell MH, Krosky DJ, Cui J, Wu CW, Hong VS, et al. Chronic inhibition of 11 β-hydroxysteroid dehydrogenase type 1 activity decreases hypertension, insulin resistance, and hypertriglyceridemia in metabolic syndrome. Biomed Res Int. 2013;2013:427640.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Girod JP, Brotman DJ. Does altered glucocorticoid homeostasis increase cardiovascular risk? Cardiovasc Res. 2004;64:217–26.

    Article  PubMed  CAS  Google Scholar 

  63. Tan KS, McFarlane LC, Lipworth BJ. Effects of oral and inhaled corticosteroid on lymphocyte beta2-adrenoceptor function in asthmatic patients. Br J Clin Pharmacol. 1997;44:565–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Hamamdzic D, Duzic E, Sherlock JD, Lanier SM. Regulation of alpha 2-adrenergic receptor expression and signaling in pancreatic beta-cells. Am J Physiol. 1995;269(1 Pt 1):E162–71.

    PubMed  CAS  Google Scholar 

  65. Langner B, Lemmer B. Circadian changes in the pharmacokinetics and cardiovascular effects of oral propranolol in healthy subjects. Eur J Clin Pharmacol. 1988;33:619–24.

    Article  PubMed  CAS  Google Scholar 

  66. Engeland WC, Byrnes GJ, Gann DS. The pituitary-adrenocortical response to hemorrhage depends on the time of day. Endocrinology. 1982;110:1856–60.

    Article  PubMed  CAS  Google Scholar 

  67. Whitworth JA, Saines D, Thatcher R, Butkus A, Scoggins BA. Blood pressure and metabolic effects of ACTH in normotensive and hypertensive man. Clin Exp Hypertens A. 1983;5:501–22.

    PubMed  CAS  Google Scholar 

  68. Zelinka T, Strauch B, Pecen L, Widimský Jr J. Diurnal blood pressure variation in pheochromocytoma, primary aldosteronism and Cushing's syndrome. J Hum Hypertens. 2004;18:107–11.

    Article  PubMed  CAS  Google Scholar 

  69. Biondi B, Klein I. Hypothyroidism as a risk factor for cardiovascular disease. Endocrine. 2004;24:1–13.

    Article  PubMed  CAS  Google Scholar 

  70. Dagre AG, Lekakis JP, Papaioannou TG, Papamichael CM, Koutras DA, Stamatelopoulos SF, et al. Arterial stiffness is increased in subjects with hypothyroidism. Int J Cardiol. 2005;103:1–6.

    Article  PubMed  Google Scholar 

  71. Streeten DH, Anderson Jr GH, Howland T, Chiang R, Smulyan H. Effects of thyroid function on blood pressure. Recognition of hypothyroid hypertension. Hypertension. 1988;11:78–83.

    Article  PubMed  CAS  Google Scholar 

  72. Kanbay M, Turgut F, Uyar ME, Akcay A, Covic A. Causes and mechanisms of nondipping hypertension. Clin Exp Hypertens. 2008;30:585–97.

    Article  PubMed  Google Scholar 

  73. Dumont M, Ouellette M, Brakier-Gingras L, Lemaire S. Circadian regulation of the biosynthesis of cardiac Met-enkephalin and precursors in normotensive and spontaneously hypertensive rats. Life Sci. 1991;48:1895–902.

    Article  PubMed  CAS  Google Scholar 

  74. Shanks MF, Clement-Jones V, Linsell CJ, Mullen PE, Rees LH, Besser GM. A study of 24-hour profiles of plasma met-enkephalin in man. Brain Res. 1981;212:403–9.

    Article  PubMed  CAS  Google Scholar 

  75. Wirz-Justice A, Tobler I, Kafka MS, Naber D, Marangos PJ, Borbely AA, et al. Sleep deprivation: effects on circadian rhythms of rat brain neurotransmitter receptors. Psychiatry Res. 1981;5:67–76.

    Article  PubMed  CAS  Google Scholar 

  76. Rubin P, Blaschke TF, Guilleminault C. Effect of naloxone, a specific opioid inhibitor, on blood pressure fall during sleep. Circulation. 1981;63:117–21.

    Article  PubMed  CAS  Google Scholar 

  77. degli Uberti EC, Salvadori S, Trasforini G, Margutti A, Ambrosio MR, Rossi R, et al. Effect of deltorphin on pituitary-adrenal response to insulin-induced hypoglycemia and ovine corticotropin-releasing hormone in healthy man. J Clin Endocrinol Metab. 1992;75:370–4.

    Google Scholar 

  78. degli Uberti EC, Ambrosio MR, Vergnani L, Portaluppi F, Bondanelli M, Trasforini G et al. Stress-induced activation of sympathetic nervous system is attenuated by the selective ∂-opioid receptor agonist deltorphin in healthy man. J Clin Endocrinol Metab. 1993;77:1490–4.

    Google Scholar 

  79. Portaluppi F, Montanari L, Bagni B. degli Uberti E, Trasforini G, Margutti A. Circadian rhythms of atrial natriuretic peptide, blood pressure and heart rate in normal subjects. Cardiology. 1989;76:428–32.

    Article  PubMed  CAS  Google Scholar 

  80. de los Santos ET, Mazzaferri EL. Calcitonin gene-related peptide: 24-hour profile and responses to volume contraction and expansion in normal men. J Clin Endocrinol Metab. 1991;72:1031–5.

    Google Scholar 

  81. Portaluppi F, Vergnani L. degli Uberti EC. Atrial natriuretic peptide and circadian blood pressure regulation: clues from a chronobiological approach. Chronobiol Int. 1993;10:176–89.

    Article  PubMed  CAS  Google Scholar 

  82. Portaluppi F, Bagni B. degli Uberti E, Montanari L, Cavallini R, Trasforini G, et al. Circadian rhythms of atrial natriuretic peptide, renin, aldosterone, cortisol, blood pressure and heart rate in normal and hypertensive subjects. J Hypertens. 1990;8:85–95.

    Article  PubMed  CAS  Google Scholar 

  83. Portaluppi F, Montanari L, Ferlini M, Vergnani L, D'Ambrosi A, Cavallini AR, et al. Consistent changes in the circadian rhythms of blood pressure and atrial natriuretic peptide in congestive heart failure. Chronobiol Int. 1991;8:432–9.

    Article  PubMed  CAS  Google Scholar 

  84. Portaluppi F, Montanari L, Vergnani L, Tarroni G, Cavallini AR, Gilli P, et al. Loss of nocturnal increase in plasma concentration of atrial natriuretic peptide in hypertensive chronic renal failure. Cardiology. 1992;80:312–23.

    Article  PubMed  CAS  Google Scholar 

  85. Portaluppi F, Montanari L, Ferlini M, Vergnani L, Bagni B. degli Uberti EC. Differences in blood pressure regulation of congestive heart failure, before and after treatment, correlate with changes in the circulating pattern of atrial natriuretic peptide. Eur Heart J. 1992;13:990–6.

    PubMed  CAS  Google Scholar 

  86. Girgis SI, Macdonald DW, Stevenson JC, Bevis PJ, Lynch C, Wimalawansa SJ, et al. Calcitonin gene-related peptide: potent vasodilator and major product of calcitonin gene. Lancet. 1985;2:14–6.

    Article  PubMed  CAS  Google Scholar 

  87. Uddman R, Edvinsson L, Ekblad E, Hakanson R, Sundler F. Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul Pept. 1986;15:1–23.

    Article  PubMed  CAS  Google Scholar 

  88. Trasforini G, Margutti A, Portaluppi F, Menegatti M, Ambrosio MR, Bagni B, et al. Circadian profile of plasma calcitonin gene-related peptide in healthy man. J Clin Endocrinol Metab. 1991;73:945–51.

    Article  PubMed  CAS  Google Scholar 

  89. Portaluppi F, Trasforini G, Margutti A, Vergnani L, Ambrosio MR, Rossi R, et al. Circadian rhythm of calcitonin gene-related peptide in uncomplicated essential hypertension. J Hypertens. 1992;10:1227–34.

    Article  PubMed  CAS  Google Scholar 

  90. Itabashi A, Kashiwabara H, Shibuya M, Tanaka, K, Masaoka H, Katayama S, et al. The interaction of calcitonin gene-related peptide with angiotensin II on blood pressure and renin release. J Hypertens. 1988;Suppl 6(4):S418–20.

    Google Scholar 

  91. Portaluppi F, Vergnani L, Margutti A, Ambrosio MR, Bondanelli M, Trasforini G, et al. Modulatory effect of the renin-angiotensin system on the plasma levels of calcitonin gene-related peptide in normal man. J Clin Endocrinol Metab. 1993;77:816–20.

    PubMed  CAS  Google Scholar 

  92. Trasforin G, Margutti A, Vergnani L, Ambrosio MR, Valentini A, Rossi R, et al. Evidence that enhancement of cholinergic tone increases basal plasma levels of calcitonin gene-related peptide in normal man. J Clin Endocrinol Metab. 1994;78:763–6.

    Google Scholar 

  93. Gnaedinger MP, Uehlinger DE, Weidmann P, Sha SG, Muff R, Born W, et al. Distinct hemodynamic and renal effects of calcitonin gene-related peptide and calcitonin in men. Am J Physiol. 1989;257(6 Pt 1):E848–54.

    PubMed  CAS  Google Scholar 

  94. Gennari C, Nami R, Agnusdei D, Bianchini C, Pavese G. Acute cardiovascular and renal effects of human calcitonin gene-related peptide. Am J Hypertens. 1989;2(2 Pt 2):45S–9.

    Article  PubMed  CAS  Google Scholar 

  95. Otto ME, Svatikova A, Barretto RB, Santos S, Hoffmann M, Khandheria B, et al. Early morning attenuation of endothelial function in healthy humans. Circulation. 2004;109:2507–10.

    Article  PubMed  Google Scholar 

  96. Al Mheid I, Corrigan F, Shirazi F, Veledar E, Li Q, Alexander WR, et al. Circadian variation in vascular function and regenerative capacity in healthy humans. J Am Heart Assoc. 2014;3, e000845.

    Article  PubMed  Google Scholar 

  97. Elherik K, Khan F, McLaren M, Kennedy G, Belch JJ. Circadian variation in vascular tone and endothelial cell function in normal males. Clin Sci (Lond). 2002;102:547–52.

    Article  CAS  Google Scholar 

  98. Walters JF, Hampton SM, Deanfield JE, Donald AE, Skene DJ, Ferns GA. Circadian variation in endothelial function is attenuated in postmenopausal women. Maturitas. 2006;54:294–303.

    Article  PubMed  CAS  Google Scholar 

  99. Kawasaki T, Ueno M, Uezono K, Kawano Y, Abe I, Kawazoe N, et al. The renin-angiotensin-aldosterone system and circadian rhythm of urine variables in normotensive and hypertensive subjects. Jpn Circ J. 1984;48:168–72.

    Article  PubMed  CAS  Google Scholar 

  100. Staessen JA, Birkenhager W, Bulpitt CJ, Fagard R, Fletcher AE, Lijnen P, et al. The relationship between blood pressure and sodium and potassium excretion during the day and at night. J Hypertens. 1993;11:443–7.

    Article  PubMed  CAS  Google Scholar 

  101. Sirota JH, Baldwin DS, Villareal H. Diurnal variations of renal function in man. J Clin Invest. 1950;29:187–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Rittig S, Knudsen UB, Nørgaard JP, Pedersen EB, Djurhuus JC. Abnormal diurnal rhythm of plasma vasopressin and urinary output in patients with enuresis. Am J Physiol. 1989;256(4 Pt 2):F664–71.

    PubMed  CAS  Google Scholar 

  103. Fukuda M, Urushihara M, Wakamatsu T, Oikawa T, Kobori H. Proximal tubular angiotensinogen in renal biopsy suggests nondipper BP rhythm accompanied by enhanced tubular sodium reabsorption. J Hypertens. 2012;30:1453–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Kawano Y, Kawasaki T, Kawazoe N, Abe I, Uezono K, Ueno M, et al. Circadian variations of urinary dopamine, norepinephrine, epinephrine and sodium in normotensive and hypertensive subjects. Nephron. 1990;55:277–82.

    Article  PubMed  CAS  Google Scholar 

  105. Ueno M, Kawasaki T, Uezono K, Omae T, Matsuoka M. Relationship of urinary kallikrein excretion to renal water and sodium excretion. Metabolism. 1983;32:433–7.

    Article  PubMed  CAS  Google Scholar 

  106. Janssen WM, de Zeeuw D, van der Hem GK, de Jong PE. Atrial natriuretic factor influences renal diurnal rhythm in essential hypertension. Hypertension. 1992;20:80–4.

    Article  PubMed  CAS  Google Scholar 

  107. Abe K, Sato M, Kasai Y, Haruyama T, Sato K, Miyazaki S, et al. circadian variation in the excretion of urinary kinin, kallikrein and prostaglandin E in normal volunteers. Jpn Circ J. 1981;45:1098–103.

    Article  PubMed  CAS  Google Scholar 

  108. Smolensky MH, Hermida RC, Ayala DE, Portaluppi F. Ingestion-time differences in medication effects: Rationale for hypertension chronotherapy to reduce cardiovascular risk and initial proof-of-concept evidence. Curr Pharm Des. 2015;21:773–90.

    Article  PubMed  CAS  Google Scholar 

  109. The Heart Outcomes Prevention Evaluation Study Investigators. Effects of angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145–53.

    Article  Google Scholar 

  110. Svensson P, de Faire U, Sleight P, Yusuf S, Ostergren J. Comparative effects of ramipril on ambulatory and office blood pressures: a HOPE Substudy. Hypertension. 2001;38:E28–32.

    Article  PubMed  CAS  Google Scholar 

  111. Hermida RC. Ambulatory blood pressure monitoring in the prediction of cardiovascular events and effects of chronotherapy: rationale and design of the MAPEC study. Chronobiol Int. 2007;24:749–75.

    Article  PubMed  Google Scholar 

  112. Hermida RC, Ayala DE, Mojón A, Fernández JR. Influence of circadian time of hypertension treatment on cardiovascular risk: Results of the MAPEC study. Chronobiol Int. 2010;27:1629–51.

    Article  PubMed  Google Scholar 

  113. Hermida RC, Ayala DE, Mojón A, Fernández JR. Cardiovascular risk of essential hypertension: influence of class, number, and treatment-time regimen of hypertension medications. Chronobiol Int. 2013;30:315–27.

    Article  PubMed  Google Scholar 

  114. Hermida RC, Ayala DE, Mojón A, Fernández JR. Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J Am Coll Cardiol. 2011;58:1165–73.

    Article  PubMed  CAS  Google Scholar 

  115. Investigators ABC-H, Roush GC, Fagard RH, Salles GF, Pierdomenico SD. Reboldi G, et al. Prognostic impact from clinic, daytime, and night-time systolic blood pressure in nine cohorts of 13,844 patients with hypertension. J Hypertens. 2014;32:2332–40.

    Article  CAS  Google Scholar 

  116. Hermida RC, Ayala DE, Mojón A, Fernández JR. Bedtime dosing of antihypertensive medications reduces cardiovascular risk in CKD. J Am Soc Nephrol. 2011;22:2313–21.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Hermida RC, Ayala DE, Mojón A, Fernández JR. Influence of time of day of blood pressure-lowering treatment on cardiovascular risk in hypertensive patients with type 2 diabetes. Diabetes Care. 2011;34:1270–6.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Ayala DE, Hermida RC, Mojón A, Fernández JR. Cardiovascular risk of resistant hypertension: Dependence on treatment-time regimen of blood pressure-lowering medications. Chronobiol Int. 2013;30:340–52.

    Article  PubMed  CAS  Google Scholar 

  119. Zhao P, Xu P, Wan C, Wang Z. Evening versus morning dosing regimen drug therapy for hypertension. Cochrane Database Syst Rev. 2011;10, CD004184.

    PubMed  Google Scholar 

  120. Roush GC, Fapohunda J, Kostis JB. Evening dosing of antihypertensive therapy to reduce cardiovascular events: a third type of evidence based on a systematic review and meta-analysis of randomized trials. J Clin Hypertens (Greenwich). 2014;16:561–8.

    Article  CAS  Google Scholar 

  121. Guyton AC. Arterial pressure and hypertension. In: Guyton AC, editor. Circulatory physiology. Philadelphia, PA: W.B. Saunders; 1980. p. 44–88.

    Google Scholar 

  122. Portaluppi F, Smolensky MH. Perspectives on the chronotherapy of hypertension based on the results of the MAPEC study. Chronobiol Int. 2010;27:1652–67.

    Article  PubMed  CAS  Google Scholar 

  123. Fezeu L, Bankir L, Hansel B, Guerrot D. Differential circadian pattern of water and Na excretion rates in the metabolic syndrome. Chronobiol Int. 2014;31:861–7.

    Article  PubMed  CAS  Google Scholar 

  124. Hermida R, Smolensky MH, Ayala DE, Fabbian F, Haus E, Fernández JR, et al. Ambulatory blood pressure guidelines for the diagnosis of hypertension and assessment of cardiovascular risk and attainment of treatment goals of adult human beings. Chronobiol Int. 2013;30:1–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Smolensky Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smolensky, M.H., Portaluppi, F., Hermida, R.C. (2016). Circadian and Cyclic Environmental Determinants of Blood Pressure Patterning and Implications for Therapeutic Interventions. In: White, W. (eds) Blood Pressure Monitoring in Cardiovascular Medicine and Therapeutics. Clinical Hypertension and Vascular Diseases. Humana Press, Cham. https://doi.org/10.1007/978-3-319-22771-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22771-9_6

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-22770-2

  • Online ISBN: 978-3-319-22771-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics