Skip to main content

Disease Control and Plant Growth Promotion (PGP) of Selected Bacterial Strains in Phaseolus vulgaris

  • Conference paper
  • First Online:
Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction

Abstract

The aim of this study was evaluating the effect of Rhizobium (RE10 and RM02) and Bacillus (B02 and B15) strains to reduce the incidence of disease caused by Sclerotinia sclerotiorum as well as to improve the yield of common bean cv. Centenary plants in field trial. The field trial was located in Pachacamac, Lima, Peru, and consisted of 8 treatments arranged in a random block design with three replicates. For the chemical control, different fungicides were applied on seeds and leaves. For each treatment, bacteria were first inoculated on the seeds and thereafter inoculated three times more in the plant neck. The seeds were pelleted with bacterial suspension (108 CFU/ml) previously mixed with 1 g of agricultural soil. The plant neck was sprayed with 6 ml of 2 × 105 CFU/ml, in three stages of crop growth. At harvest time, all the inoculated treatments showed the lowest percentage of plants infected by the disease caused by S. sclerotiorum with significant difference compared with untreated plants (14 %). The best treatment was RE10 + B02 (2 %), followed by RM02 (3 %) and B02 (4 %) without significant difference compared with the chemical control (2 %). The same strains also showed the highest percentage of germination. Treatment RE10 + B02 also presented the highest yield (16 pods/plant and grain yield of 1717.8 kg/ha) with significant difference compared with untreated plants (11 pods/plant and 883.2 kg/ha). On the other hand, plants inoculated with Rhizobium strains presented between six and ten nodules per plant, while untreated plants presented less than four.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Arcos J, Zúñiga D (2015) Efecto de rizobacterias en el control de Rhizoctonia solani en el cultivo de papa. Ecol apl 14:95–101

    Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:1–12. doi:10.1186/1475-2859-8-63

    Article  Google Scholar 

  • Bardin SD, Huang HC, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Can J Bot 82:291–296

    Article  Google Scholar 

  • Calvo P, Ormeño E, Martínez E, Zúñiga D (2010) Characterization of Bacillus isolates of potato rhizosphere from andean soils of Peru and their potential PGPR characteristics. Braz J Microbiol 41:899–906. doi:10.1590/S1517-83822010000400008

    Article  PubMed  PubMed Central  Google Scholar 

  • Camarena M, Huaringa J, Mostacero N (2009) Innovación tecnológica para el incremento de la producción de frijol común (Phaseolus vulagaris L.). Primera Edición. Universidad Nacional Agraria La Molina-Consejo de Ciencia, Tecnología e Innovación Tecnológica, pp 20–25 (ISBN 978-9972-50-093-0)

    Google Scholar 

  • Camarena M, Huaringa A, Mostacero E, Patricio J (2012) Tecnologías para el incremento de la producción del frijol vainita (Phaseolus vulgaris L.) para la exportación. Primera Edición. Universidad Nacional Agraria La Molina, pp. 13, 72–75 (ISBN 978-612-4147-00-5)

    Google Scholar 

  • Cawoy H, Bettiol W, Fickers P and Ongena M (2011) Bacillus-based biological control of plant diseases. In: Pesticides in the modern world pesticides use and management, pp. 351–401 (ISBN 978-953-307-459-7)

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdiyeva D, Juraeva D, Poberejskaya S, Myachina O, Teryuhova P, Seydalieva L, Aliev A (2004) Improvement of wheat and cotton growth and nutrient uptake by phosphate solubilizing bacteria. In: Proceeding of 26th annual conservation tillage conference for sustainable agriculture, Auburn, pp 58–65

    Google Scholar 

  • Gonzales E, Flores W, Matsubara M, Ormeño-Orrillo E, Martínez-Romero E, Zuñiga D (2007) Pérfiles REP-PCR y bioquímicos de cepas de Rhizobium aislados de tres variedades de frijol común (Phaseolus vulgaris L.). In: XXIII Reunión de la Asociación Latinoamericana de Rizobiología. Córdoba, Argentina. 25–28 de Marzo, pp 88

    Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney R, Gowda C, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3. Biotech 5:355–377. doi:10.1007/s13205-014-0241-x

    Google Scholar 

  • Haggag W, Abd-El-Kareem F, Abou-Hussein S (2013) Bioprocessing of Brevibacillus Brevis and Bacillus Polymyxa: a potential biocontrol agent of gray mould disease of strawberry fruits. IJEIT 3:509–518

    Google Scholar 

  • Hashidoko Y, Nakayama T, Homma Y, Tahara S (1999) Structure elucidation of xanthovaccin A, a new antibiotci produced from Stenotrophomonas sp. stran SB-K88. Tetrahedron Lett 40:2957–2960

    Article  CAS  Google Scholar 

  • Idriss E, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant growth-promoting effect. Microbiology 148:2097–2109

    Article  CAS  PubMed  Google Scholar 

  • Kloepper J, Schroth M (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria. Station de Pathologie Ve´ge´tale et de Phytobacte´riologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Olalde P, Aguilera L (1998) Microorganismos y Biodiversidad. Terra 16:289–292

    Google Scholar 

  • Ozkoc I, Deliveli MH (2001) In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum biovar phaseoli isolates. Turk J Biol 25:435–445

    Google Scholar 

  • Reddy PP (2013) Plant growth promoting rhizobacteria (PGPR). Recent advances in crop protection. Springer, India, pp 131–145

    Book  Google Scholar 

  • SENAMHI (2015) Available at http://www.senamhi.gob.pe/

  • Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79:41–45. doi:10.1016/S0960-8524(01)00036-0

    Article  CAS  PubMed  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  • Zhang JX, Xue AG (2010) Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathol 59:382–391. doi:10.1111/j.1365-3059.2009.02227.x

    Article  Google Scholar 

  • Zhang SM, Wang YX, Meng LQ, Li J, Zhao XY, Cao X, Chen XL, Wang AX, Li JF (2012) Isolation and characterization of antifungal lipopéptidos produced by endophytic Bacillus amyloliquefaciens TF28. Afr J Microbiol Res 6:1747–1755. doi:10.5897/AJMR11.1025

    CAS  Google Scholar 

  • Zúñiga D (2012) Manual de Microbiología Agrícola: Rhizobium, PGPRs, Indicadores de Fertilidad e Inocuidad. In: Ed. Olaya M. Universidad Nacional Agraria La Molina. Lima-Perú, pp. 53–55 (ISBN 978-612-4147-04-3)

    Google Scholar 

  • Zuñiga D (2015) Estudio de las Interacciones Phaseolus vulgaris-PGPR-Micorrizas como Herramienta Biotecnológica para el Control de Fitopatógenos del Cultivo de Frijol. Informe Técnico. Proyecto IT-UNALM N°003-2013

    Google Scholar 

Download references

Acknowledgments

This work was supported by IT-UNALM No. 003-2013 and FONDECYT No. 004-2013-CONCYTEC PROJECTS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Zúñiga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Memenza, M., Mostacero, E., Camarena, F., Zúñiga, D. (2016). Disease Control and Plant Growth Promotion (PGP) of Selected Bacterial Strains in Phaseolus vulgaris . In: González-Andrés, F., James, E. (eds) Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer, Cham. https://doi.org/10.1007/978-3-319-32528-6_20

Download citation

Publish with us

Policies and ethics