Skip to main content

NGS Analysis of Somatic Mutations in Cancer Genomes

  • Chapter
  • First Online:
Big Data Analytics in Genomics
  • 2964 Accesses

Abstract

The emergence of next-generation sequencing (NGS) technologies has facilitated the accumulation of large genomic datasets for most types of cancer. The analysis of these data has confirmed the early predictions of extensive sequence and structural diversity of cancer genomes, fueling the development of new computational approaches to decipher inter- and intratumoral somatic variation within and among cancer patients. Overall, these techniques have led to a better understanding of the disease as well as to relevant improvements in the diagnosis and therapy of cancer. In this chapter, we review current approaches for the analysis of somatic mutations in cancer genomes using NGS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albers CA, Lunter G, MacArthur DG, et al (2011) Dindel: accurate indel calls from short-read data. Genome Res 21:961–973.

    Google Scholar 

  2. Andor N, Graham TA, Jansen M, et al (2016) Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat Med 22:105–113.

    Google Scholar 

  3. Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F (2015) Cancer evolution: mathematical models and computational inference. Syst Biol 64:e1–25.

    Google Scholar 

  4. Belkadi A, Bolze A, Itan Y, et al (2015) Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A 112: 5473–5478.

    Google Scholar 

  5. Boeva V, Zinovyev A, Bleakley K, et al (2011) Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinformatics 27:268–269.

    Google Scholar 

  6. Cancer Genome Atlas Network (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576–582.

    Google Scholar 

  7. Carter H, Chen S, Isik L, et al (2009) Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 69:6660–6667.

    Google Scholar 

  8. Carter SL, Cibulskis K, Helman E, et al (2012) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30:413–421.

    Google Scholar 

  9. Chen K, Chen L, Fan X, et al (2014) TIGRA: a targeted iterative graph routing assembler for breakpoint assembly. Genome Res 24:310–317.

    Google Scholar 

  10. Chiang DY, Getz G, Jaffe DB, et al (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods 6:99–103.

    Google Scholar 

  11. Chmielecki J, Juliann C, Matthew M (2014) DNA Sequencing of Cancer: What Have We Learned? Annu Rev Med 65:63–79.

    Google Scholar 

  12. Christoforides A, Carpten JD, Weiss GJ, et al (2013) Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs. BMC Genomics 14:302.

    Google Scholar 

  13. Cibulskis K, Lawrence MS, Carter SL, et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31:213–219.

    Google Scholar 

  14. Cochrane G, Cook CE, Birney E (2012) The future of DNA sequence archiving. Gigascience 1:2.

    Google Scholar 

  15. Dees ND, Zhang Q, Kandoth C, et al (2012) MuSiC: identifying mutational significance in cancer genomes. Genome Res 22:1589–1598.

    Google Scholar 

  16. Deshwar AG, Vembu S, Yung CK, et al (2015) PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol 16:35.

    Google Scholar 

  17. Desper R, Jiang F, Kallioniemi OP, et al (1999) Inferring tree models for oncogenesis from comparative genome hybridization data. J Comput Biol 6:37–51.

    Google Scholar 

  18. Ding L, Wendl MC, McMichael JF, Raphael BJ (2014) Expanding the computational toolbox for mining cancer genomes. Nat Rev Genet 15:556–570.

    Google Scholar 

  19. El-Kebir M, Oesper L, Acheson-Field H, Raphael BJ (2015) Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 31:i62–70.

    Google Scholar 

  20. Fan X, Xian F, Abbott TE, et al (2014) BreakDancer: Identification of Genomic Structural Variation from Paired-End Read Mapping. In: Current Protocols in Bioinformatics. pp 15.6.1–15.6.11

    Google Scholar 

  21. Fischer A, Vázquez-García I, Illingworth CJR, Mustonen V (2014) High-definition reconstruction of clonal composition in cancer. Cell Rep 7:1740–1752.

    Google Scholar 

  22. Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing.

    Google Scholar 

  23. Gawad C, Charles G, Winston K, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188.

    Google Scholar 

  24. Gerlinger M, Rowan AJ, Horswell S, et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892.

    Google Scholar 

  25. Gerstung M, Beisel C, Rechsteiner M, et al (2012) Reliable detection of subclonal single-nucleotide variants in tumour cell populations. Nat Commun 3:811.

    Google Scholar 

  26. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313.

    Google Scholar 

  27. Ha G, Roth A, Khattra J, et al (2014) TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res 24:1881–1893.

    Google Scholar 

  28. Hansen NF, Gartner JJ, Mei L, et al (2013) Shimmer: detection of genetic alterations in tumors using next-generation sequence data. Bioinformatics 29:1498–1503.

    Google Scholar 

  29. Jiao W, Vembu S, Deshwar AG, et al (2014) Inferring clonal evolution of tumors from single nucleotide somatic mutations. BMC Bioinformatics 15:35.

    Google Scholar 

  30. Koboldt DC, Zhang Q, Larson DE, et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576.

    Google Scholar 

  31. Lai D, Ha G, Shah S (2012) HMMcopy: Copy number prediction with correction for GC and mappability bias for HTS data.

    Google Scholar 

  32. Larson DE, Harris CC, Chen K, et al (2012) SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28:311–317.

    Google Scholar 

  33. Lawrence MS, Stojanov P, Polak P, et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218.

    Google Scholar 

  34. Layer RM, Chiang C, Quinlan AR, Hall IM (2014) LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15:R84.

    Google Scholar 

  35. Letouzé E, Allory Y, Bollet MA, et al (2010) Analysis of the copy number profiles of several tumor samples from the same patient reveals the successive steps in tumorigenesis. Genome Biol 11:R76.

    Google Scholar 

  36. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27: 2987–2993.

    Google Scholar 

  37. Li H (2012) Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics 28:1838–1844.

    Google Scholar 

  38. Ling S, Shaoping L, Zheng H, et al (2015) Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proceedings of the National Academy of Sciences 201519556.

    Google Scholar 

  39. Malikic S, McPherson AW, Donmez N, Sahinalp CS (2015) Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 31:1349–1356.

    Google Scholar 

  40. Marx V, Vivien M (2013) Biology: The big challenges of big data. Nature 498:255–260.

    Google Scholar 

  41. Mayrhofer M, DiLorenzo S, Isaksson A (2013) Patchwork: allele-specific copy number analysis of whole-genome sequenced tumor tissue. Genome Biol 14:R24.

    Google Scholar 

  42. McGranahan N, Swanton C (2015) Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27:15–26.

    Google Scholar 

  43. McKenna A, Hanna M, Banks E, et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303.

    Google Scholar 

  44. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696.

    Google Scholar 

  45. Meynert AM, Morad A, FitzPatrick DR, Taylor MS (2014) Variant detection sensitivity and biases in whole genome and exome sequencing. BMC Bioinformatics 15:247.

    Google Scholar 

  46. Miller CA, White BS, Dees ND, et al (2014) SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol 10:e1003665.

    Google Scholar 

  47. Moncunill V, Gonzalez S, Beà S, et al (2014) Comprehensive characterization of complex structural variations in cancer by directly comparing genome sequence reads. Nat Biotechnol 32:1106–1112.

    Google Scholar 

  48. Mose LE, Wilkerson MD, Hayes DN, et al (2014) ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics 30:2813–2815.

    Google Scholar 

  49. Mwenifumbo JC, Marra MA (2013) Cancer genome-sequencing study design. Nat Rev Genet 14:321–332.

    Google Scholar 

  50. Navin NE (2014) Cancer genomics: one cell at a time. Genome Biol. doi: 10.1186/s13059-014-0452-9

    Google Scholar 

  51. Navin N, Kendall J, Troge J, et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94.

    Google Scholar 

  52. Nicholson JM (2013) Will we cure cancer by sequencing thousands of genomes? Mol Cytogenet 6:57.

    Google Scholar 

  53. Oesper L, Mahmoody A, Raphael BJ (2013) THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data. Genome Biol 14:R80.

    Google Scholar 

  54. Popic V, Salari R, Hajirasouliha I, et al (2015) Fast and scalable inference of multi-sample cancer lineages. Genome Biol 16:91.

    Google Scholar 

  55. Posada D (2015) Cancer Molecular Evolution. J Mol Evol 81:81–83.

    Google Scholar 

  56. Qiao Y, Quinlan AR, Jazaeri AA, et al (2014) SubcloneSeeker: a computational framework for reconstructing tumor clone structure for cancer variant interpretation and prioritization. Genome Biol 15:443.

    Google Scholar 

  57. Quinlan AR, Clark RA, Sokolova S, et al (2010) Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. Genome Res 20:623–635.

    Google Scholar 

  58. Rausch T, Zichner T, Schlattl A, et al (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28:i333–i339.

    Google Scholar 

  59. Rimmer A, Phan H, Mathieson I, et al (2014) Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet 46: 912–918.

    Google Scholar 

  60. Roth A, Ding J, Morin R, et al (2012) JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data. Bioinformatics 28:907–913.

    Google Scholar 

  61. Roth A, Khattra J, Yap D, et al (2014) PyClone: statistical inference of clonal population structure in cancer. Nat Methods 11:396–398.

    Google Scholar 

  62. Saunders CT, Wong WSW, Swamy S, et al (2012) Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28:1811–1817.

    Google Scholar 

  63. Schlötterer C, Christian S, Raymond T, et al (2014) Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. Nat Rev Genet 15:749–763.

    Google Scholar 

  64. Schwarz RF, Trinh A, Sipos B, et al (2014) Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput Biol 10:e1003535.

    Google Scholar 

  65. Shiraishi Y, Sato Y, Chiba K, et al (2013) An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res 41:e89.

    Google Scholar 

  66. Simon R, Roychowdhury S (2013) Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov 12:358–369.

    Google Scholar 

  67. Sindi SS, Onal S, Peng LC, et al (2012) An integrative probabilistic model for identification of structural variation in sequencing data. Genome Biol 13:R22.

    Google Scholar 

  68. Song S, Nones K, Miller D, et al (2012) qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. PLoS One 7:e45835.

    Google Scholar 

  69. Sottoriva A, Kang H, Ma Z, et al (2015) A Big Bang model of human colorectal tumor growth. Nat Genet 47:209–216.

    Google Scholar 

  70. Stratton MR (2011) Exploring the genomes of cancer cells: progress and promise. Science 331:1553–1558.

    Google Scholar 

  71. Strino F, Parisi F, Micsinai M, Kluger Y (2013) TrAp: a tree approach for fingerprinting subclonal tumor composition. Nucleic Acids Res 41:e165.

    Google Scholar 

  72. Szabo A, Boucher K (2002) Estimating an oncogenetic tree when false negatives and positives are present. Math Biosci 176:219–236.

    Google Scholar 

  73. Tamborero D, Gonzalez-Perez A, Lopez-Bigas N (2013) OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics 29: 2238–2244.

    Google Scholar 

  74. Usuyama N, Shiraishi Y, Sato Y, et al (2014) HapMuC: somatic mutation calling using heterozygous germ line variants near candidate mutations. Bioinformatics 30:3302–3309.

    Google Scholar 

  75. Van der Auwera GA, Carneiro MO, Hartl C, et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 11:11.10.1–11.10.33.

    Google Scholar 

  76. Van Loo P, Nordgard SH, Lingjaerde OC, et al (2010) Allele-specific copy number analysis of tumors. Proceedings of the National Academy of Sciences 107:16910–16915.

    Google Scholar 

  77. Van Loo P, Voet T (2014) Single cell analysis of cancer genomes. Curr Opin Genet Dev 24: 82–91.

    Google Scholar 

  78. Wang J, Mullighan CG, Easton J, et al (2011) CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat Methods 8:652–654.

    Google Scholar 

  79. Wang W, Wang P, Xu F, et al (2014a) FaSD-somatic: a fast and accurate somatic SNV detection algorithm for cancer genome sequencing data. Bioinformatics 30:2498–2500.

    Google Scholar 

  80. Wang Y, Jill W, Leung ML, et al (2014b) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–160.

    Google Scholar 

  81. Watson M, Mick W (2014) Quality assessment and control of high-throughput sequencing data. Front Genet. doi: 10.3389/fgene.2014.00235

    Google Scholar 

  82. Yang L, Luquette LJ, Gehlenborg N, et al (2013) Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153:919–929.

    Google Scholar 

  83. Yau C (2014) Accounting for sources of bias and uncertainty in copy number-based statistical deconvolution of heterogeneous tumour samples.

    Google Scholar 

  84. Ye K, Schulz MH, Long Q, et al (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871.

    Google Scholar 

  85. Zare H, Wang J, Hu A, et al (2014) Inferring clonal composition from multiple sections of a breast cancer. PLoS Comput Biol 10:e1003703.

    Google Scholar 

  86. Zhang C-Z, Leibowitz ML, Pellman D (2013) Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27:2513–2530.

    Google Scholar 

  87. Zhao M, Wang Q, Wang Q, et al (2013) Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinformatics 14 Suppl 11:S1.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council (ERC-617457- PHYLOCANCER to D.P.). T.P. is supported by a PhD fellowship from the Galician Government (ED481A-2015/083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Posada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prieto, T., Alves, J.M., Posada, D. (2016). NGS Analysis of Somatic Mutations in Cancer Genomes. In: Wong, KC. (eds) Big Data Analytics in Genomics. Springer, Cham. https://doi.org/10.1007/978-3-319-41279-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41279-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41278-8

  • Online ISBN: 978-3-319-41279-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics