Skip to main content

The Global Positioning System (GPS)

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

This chapter presents an overview of the US Global Positioning System (GlossaryTerm

GPS

), which became the first operational global navigation satellite system (GlossaryTerm

GNSS

) core constellation when it was declared fully operational in 1995. First, the space segment is described, including key characteristics of the different satellite types. Then, an overview of the control segment is given, including its operations and evolution of capabilities. This is followed by an overview of the GPS signals, current and future, as well as a description of the navigation data content. Then, the time and coordinate systems used by GPS are described. The chapter is concluded with a brief description of services and performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AEP:

architecture evolution plan

AFSCN:

air force satellite control network

AKM:

apogee kick motor

BOC:

binary offset carrier

CL:

long code

CM:

moderate-length code

CNAV:

civil navigation message

CRC:

cyclic redundancy check

CS:

control segment

ECI:

Earth-centered inertial

EELV:

evolved expendable launch vehicles

EIRP:

effective isotropic radiated power

FAA:

US Federal Aviation Administration

FEC:

forward error correction

GNSS:

global navigation satellite system

GPS:

Global Positioning System

HOW:

hand-over word

IODC:

issue-of-data clock

IODE:

issue-of-data ephemeris

ITRF:

International Terrestrial Reference Frame

JPL:

Jet Propulsion Laboratory

L-AII:

Legacy Accuracy Improvement Initiative

LNAV:

legacy navigation message

MCS:

master control station

MEO:

medium Earth orbit

NANU:

notice advisory to NAVSTAR users

NGA:

National Geospatial-Intelligence Agency

NMCT:

navigation message correction table

NUDET:

nuclear detection (payload)

OCS:

operational control system

OCX:

next generation operational control segment of GPS

PLL:

phase lock loop

PPS:

precise positioning service

PRN:

pseudo-random noise

RAAN:

right ascension of ascending node

RF:

radio frequency

RMS:

root mean square

SA:

selective availability

SBAS:

satellite-based augmentation system

SPS:

standard positioning service

SVN:

space vehicle number

SV:

space vehicle

TLM:

telemetry (word)

UHF:

ultra-high frequency

USNO:

United States Naval Observatory

UTC:

Coordinated Universal Time

WAAS:

Wide Area Augmentation System

WAGE:

wide area GPS enhancement

WGS:

World Geodetic System

References

  1. B.W. Parkinson, S.W. Gilbert: NAVSTAR: Global positioning system – Ten years later, Proc. IEEE 71(10), 1177–1186 (1983)

    Article  Google Scholar 

  2. B.W. Parkinson, J.J. Spilker Jr.: Global Positioning System: Theory and Applications, Vol. I (American Institute of Aeronautics and Astronautics, Washington 1996)

    Book  Google Scholar 

  3. E.D. Kaplan, C.J. Hegarty: Understanding GPS – Principles and Applications, 2nd edn. (Artech House, Boston/London 2006)

    Google Scholar 

  4. P. Misra, P. Enge: Global Positioning System – Signals, Measurements and Performance, Vol. 2 (Ganga Jamuna, Lincoln 2011)

    Google Scholar 

  5. Global Positioning System Standard Positioning Service Performance Standard, 4th edn. (US Department of Defense, Washington 2008)

    Google Scholar 

  6. G.B. Green, P.D. Massatt, N.W. Rhodus: The GPS 21 primary satellite constellation, Navigation 36, 9–24 (1989)

    Article  Google Scholar 

  7. A.B. Jenkin, R.A. Gick: Collision risk posed to the global positioning system by disposal orbit instability, J. Spacecr. Rocket. 39(4), 532–539 (2002)

    Article  Google Scholar 

  8. D.M. Galvin: History of the GPS space segment from block I to the new millennium, Proc. ION GPS 1999, Nashville (ION, Virginia 1999) pp. 1843–1854

    Google Scholar 

  9. L.A. Mallette, P. Rochat, J. White: Historical review of atomic frequency standards used in space systems – 10 year update, Proc. 38th Annu. PTTI Meet., Washington DC (2006)

    Google Scholar 

  10. F.M. Czopek, S. Shollenberger: Description and performance of the GPS block I and II L-band antenna and link budget, Proc. ION GPS 1993, Salt Lake City, UT (ION,1993) pp. 37–43

    Google Scholar 

  11. K. Kiser, S.H. Vaughan: GPS IIR joins the GPS constellation, Proc. ION GPS, Nashville, TN (ION, Virginia 1998) pp. 1915–1923

    Google Scholar 

  12. T. Hartman, L.R. Boyd, D. Koster, J.A. Rajan, C.J. Harvey: Modernizing the GPS block IIR spacecraft, Proc. ION GPS, Salt Lake City (ION, Virginia 2000) pp. 2115–2121

    Google Scholar 

  13. W. Marquis, D. Reigh: On-orbit performance of the improved GPS block IIR antenna panel, Proc. ION GNSS, Long Beach (ION, Virginia 2005) pp. 2418–2426

    Google Scholar 

  14. J.A. Rajan, J.A. Tracy: GPS IIR-M: Modernizing the signal-in-space, Proc. ION NTM, Anaheim (2003) pp. 484–493

    Google Scholar 

  15. S. Ericson, K. Shallberg, C. Edgar: Characterization and simulation of SVN49 (PRN01) elevation dependent measurement biases, Proc. ION ITM, San Diego (ION, Virginia 2010) pp. 963–974

    Google Scholar 

  16. S.C. Fisher, K. Ghassemi: GPS IIF – The next generation, Proc. IEEE 87(1), 24–47 (1999)

    Article  Google Scholar 

  17. M. Braschak, H. Brown Jr., J. Carberry, T. Grant, G. Hatten, R. Patocka, E. Watts: GPS IIF satellite overview, Proc. ION GNSS, Portland (ION, Virginia 2010) pp. 753–770

    Google Scholar 

  18. W. Marquis, S. Michael: GPS III – Bringing new capabilities to the global community, Inside GNSS 6(5), 34–48 (2011)

    Google Scholar 

  19. GPS IIR-21 (M), Mission Book (United Launch Alliance, Littleton, Colorado 2009) www.ulalaunch.com

  20. Y.E. Bar-Sever: A new model for GPS yaw attitude, J. Geod. 70(11), 714–723 (1996)

    Article  Google Scholar 

  21. F. Dilssner: GPS IIF-1 satellite, antenna phase centre and attitude modelling, Inside GNSS 5(6), 59–64 (2010)

    Google Scholar 

  22. J. Kouba: A simplified yaw-attitude model for eclipsing GPS satellites, GPS Solutions 13(1), 1–12 (2009)

    Article  Google Scholar 

  23. S.S. Russell, J.H. Schaibly: Control segment and user performance, Navigation 25(2), 166–172 (1978)

    Article  Google Scholar 

  24. J. Taylor: The GPS operational control system Kalman filter description and history, Proc. ION GNSS, Portland (ION, Virginia 2010) pp. 2329–2366

    Google Scholar 

  25. T. Creel, A.J. Dorsey, Ph.J. Mendicki, J. Little, R.G. Mach, B.A. Renfro: New, improved GPS – The legacy accuracy improvement initiative, GPS World 17(3), 20–31 (2006)

    Google Scholar 

  26. W. Bertiger, Y. Bar-Sever, N. Harvey, K. Miller, L. Romans, J. Weiss, L. Doyle, T. Solorzano, J. Petzinger, A. Stell: Next generation GPS ground control segment (OCX) navigation design, Proc. ION GNSS, Portland (ION, Virginia 2010) pp. 964–977

    Google Scholar 

  27. W. Bertiger, Y. Bar-Sever, E. Bokor, M. Butala, A. Dorsey, J. Gross, N. Harvey, W. Lu, K. Miller, M. Miller, L. Romans, A. Sibthorpe, J. Weiss, M. Jones, J. Holden, A. Donigian, P. Saha: First orbit determination performance assessment for the OCX navigation software in an operational environment, Proc. ION GNSS, Nashville (ION, Virginia 2012)

    Google Scholar 

  28. P. Collins, R. Langley, J. LaMance: Limiting factors in tropospheric propagation delay error modelling for GPS airborne navigation, Proc. ION 52nd Annu. Meet., Cambridge (ION, Virginia 1996) pp. 519–528

    Google Scholar 

  29. D.D. McCarthy, G. Petit: IERS Conventions (2003) IERS Technical Note No. 36 (des Bundesamts für Kartographie und Geodäsie, Frankfurt 2004)

    Google Scholar 

  30. B. Wiley, D. Craig, D. Manning, J. Novak, R. Taylor, L. Weingarth: NGA’s role in GPS, Proc. ION GPS, Fort Worth (ION, Virginia 2006) pp. 2111–2119

    Google Scholar 

  31. C.H. Yinger, W.A. Feess, R. Di-Esposti, A. Chasko, B. Cosentino, B. Wilson, B. Wheaton: GPS satellite interfrequency biases, Proc. ION Annu. Meet., Cambridge (ION, Virginia 1999) pp. 347–354

    Google Scholar 

  32. Navstar GPS Control Segment to User Support Community Interfaces (Global Positioning Systems Directorate, California 2010) ICD-GPS-240A, 12 Jan. 2010

    Google Scholar 

  33. Navstar GPS Space Segment/Navigation User Segment Interfaces, Interface Specification (Global Positioning Systems Directorate, California 2013) IS-GPS-200H, 24 Sep. 2013

    Google Scholar 

  34. R. Gold: Optimal binary sequences for spread spectrum multiplexing, IEEE Trans. Inf. Theory 13(4), 619–621 (1967)

    Article  Google Scholar 

  35. B. Barker, J. Betz, J. Clark, J. Correia, J. Gillis, S. Lazar, K. Rehborn, J. Stratton: Overview of the GPS M code signal, Proc. ION NTM, Anaheim (ION, Virginia 2000) pp. 542–549

    Google Scholar 

  36. R.D. Fontana, W. Cheung, T. Stansell: The new L2 civil signal, GPS World 12(9), 28–34 (2001)

    Google Scholar 

  37. A.J. Van-Dierendonck, C.J. Hegarty: The new L5 civil GPS signal, GPS World 11(9), 64–72 (2000)

    Google Scholar 

  38. Navstar GPS Space Segment/User Segment L5 Interfaces, Interface Specification (Global Positioning Systems Directorate, California 2013) IS-GPS-705D, 24 Sep. 2013

    Google Scholar 

  39. J.J. Rushanan: The spreading and overlay codes for the L1C signal, Navigation 54(1), 43–51 (2007)

    Article  Google Scholar 

  40. F. Neuman, L. Hofman: New pulse sequences with desirable correlation properties, Proc. Natl. Telem. Conf. (1971)

    Google Scholar 

  41. J.W. Betz: Binary offset carrier modulations for radionavigation, Navigation 48(4), 227–246 (2001)

    Article  Google Scholar 

  42. H.L. van Trees: Detection, Estimation, and Modulation Theory – Part 1 (John Wiley, New York 2001)

    Book  Google Scholar 

  43. J.W. Betz, M.A. Blanco, C.R. Cahn, P.A. Dafesh, C.J. Hegarty, K.W. Hudnut, V. Kasemsri, R. Keegan, K. Kovach, L.S. Lenahan, H.H. Ma, J.J. Rushanan, D. Sklar, T.A. Stansell, C.C. Wang, S.K. Yi: Descsription of the L1C signal, Proc. ION GNSS (2006) pp. 2080–2209

    Google Scholar 

  44. Navstar GPS Space Segment/User Segment L1C Interfaces, Interface Specification (Global Positioning Systems Directorate, California 2013) IS-GPS-800D, 24 Sep. 2013

    Google Scholar 

  45. G.W. Hein, J.A. Avila-Rodriguez, S. Wallner, A.R. Pratt, J. Owen, J.L. Issler, J.W. Betz, C.J. Hegarty, S. Lt: Lenahan, J.J. Rushanan, A.L. Kraay, T.A. Stansell: MBOC: The new optimized spreading modulation recommended for Galileo L1 OS and GPS L1C, Inside GNSS 1(4), 57–66 (2006)

    Google Scholar 

  46. T. Walter, J. Blanch: Characterization of GNSS clock and ephemeris errors to support ARAIM, Proc. ION PNT 2015, Honolulu (ION, Virginia 2015) pp. 920–931

    Google Scholar 

  47. S.T. Hutsell, G. Dieter, G. Hatten, T. Dass, J. Harvey: GPS clock/timescale management in the master control station, Proc. 35th Annu. PTTI Meet., San Diego (2003)

    Google Scholar 

  48. S.T. Hutsell, B.K. Brottlund, C.A. Harris: How old is your GPS navigation message?, Proc. ION GPS, Salt Lake City (ION, Virginia 2000) pp. 2556–2561

    Google Scholar 

  49. J.A. Klobuchar: Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerosp. Electron. Syst. 23(3), 325–331 (1987)

    Article  Google Scholar 

  50. R. Kenneth, Brown Jr.: The theory of the GPS composite clock, Proc. ION GPS, Albuquerque (ION, Virgnia 1991) pp. 223–242

    Google Scholar 

  51. T.E. Parker, D. Matsakis: Time and frequency dissemination: Advances in GPS transfer techniques, GPS World 15(11), 32–38 (2004), November

    Google Scholar 

  52. D.R. Hinson: Letter to Dr. A. Kotaite (Federal Aviation Administration, Washington 1994), Oct. 14

    Google Scholar 

  53. M.C. Blakey: Letter to Dr. R. Kobeh (Federal Aviation Administration, Washington 2007), Sep. 10

    Google Scholar 

  54. W.J. Clinton: Statement by the President Regarding the United States Decision to Stop Degrading Global Positioning System Accuracy (White House, Office of the Press Secretary, Washington D.C. 2000), May 1

    Google Scholar 

  55. D. Perino: Statement by the Press Secretary (White House, Office of the Press Secretary, Washington D.C. 2007), Sep. 18

    Google Scholar 

  56. K.T. Woo: Optimum semicodeless carrier-phase tracking of L2, Navigation 47(2), 82–99 (2000)

    Article  Google Scholar 

  57. US Department of Defense: Preservation of Continuity for Semi-Codeless GPS Applications (US Federal Register, Washington DC 2008), 23 September

    Google Scholar 

  58. 2014 Federal Radionavigation Plan, (US Departments of Defense, Transportation, and Homeland Security, Washington D.C. 2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Hegarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hegarty, C.J. (2017). The Global Positioning System (GPS). In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_7

Download citation

Publish with us

Policies and ethics