Skip to main content

A Reservoir Computing Approach for Balance Assessment

  • Conference paper
  • First Online:
Book cover Advanced Analysis and Learning on Temporal Data (AALTD 2015)

Abstract

A relevant aspect in the field of health monitoring is represented by the evaluation of balance stability in the elderly. The Berg Balance Scale (BBS) represents a golden standard test for clinical assessment of balance stability. Recently, the Wii Balance Board has been successfully validated as an effective tool for the analysis of static balance-related features such as the duration or the speed of assessment of patient’s center of pressure. In this paper we propose an innovative unobtrusive approach for automatic evaluation of balance assessment, by analyzing the whole temporal information generated by the balance board. In particular, using Recurrent Neural Networks implemented according to the Reservoir Computing paradigm, we propose to estimate the BBS score of a patient from the temporal data gathered during the execution on the balance board of one simple BBS exercise. The experimental assessment of the proposed approach on real-world data shows promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amato, G., Bacciu, D., Broxvall, M., Chessa, S., Coleman, S., Di Rocco, M., Dragone, M., Gallicchio, C., Gennaro, C., McGinnity, T.M., Lozano, H., Micheli, A., Ray, A., Renteira, A., Saffiotti, A., Swords, D., Vairo, C., Vance, P.: Robotic ubiquitous cognitive ecology for smart homes. J. Intell. Robot. Syst. 80, 1–25 (2015)

    Article  Google Scholar 

  2. Amato, G., Broxvall, M., Chessa, S., Dragone, M., Gennaro, C., López, R., Maguire, L., Mcginnity, T., Micheli, A., Renteria, A., O’Hare, G., Pecora, F.: Robotic ubiquitous cognitive network. In: Novais, P., Hallenborg, K., Tapia, D.I., Corchado Rodríguez, J.M. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 153, pp. 191–195. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., Micheli, A.: An experimental characterization of reservoir computing in ambient assisted living applications. Neural Comput. Appl. 24(6), 1451–1464 (2014)

    Article  Google Scholar 

  4. Bacciu, D., Broxvall, M., Coleman, S., Dragone, M., Gallicchio, C., Gennaro, C., Guzmán, R., López, R., Lozano-Peiteado, H., Ray, A., Renteira, A., Saffiotti, A., Vairo, C.: Self-sustaining learning for robotic ecologies. In: SENSORNETS, pp. 99–103 (2012)

    Google Scholar 

  5. Bacciu, D., Chessa, S., Gallicchio, C., Lenzi, A., Micheli, A., Pelagatti, S.: A general purpose distributed learning model for robotic ecologies. Robot Control. 10–1, 435–440 (2012)

    Google Scholar 

  6. Bacciu, D., Chessa, S., Gallicchio, C., Micheli, A., Barsocchi, P.: An experimental evaluation of reservoir computation for ambient assisted living. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F.C. (eds.) Neural Nets and Surroundings. SIST, vol. 19, pp. 41–50. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Bacciu, D., et al.: Smart environments and context-awareness for lifestyle management in a healthy active ageing framework. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS, vol. 9273, pp. 54–66. Springer, Heidelberg (2015)

    Google Scholar 

  8. Bacciu, D., Gallicchio, C., Micheli, A., Chessa, S., Barsocchi, P.: Predicting user movements in heterogeneous indoor environments by reservoir computing. In: Bhatt, M., Guesgen, H.W., Augusto, J.C. (eds.) Proceedings of the IJCAI Workshop on Space, Time and Ambient Intelligence (STAMI 2011), pp. 1–6 (2011)

    Google Scholar 

  9. Barsocchi, P., Chessa, S., Micheli, A., Gallicchio, C.: Forecast-driven enhancement of received signal strength (RSS)-based localization systems. ISPRS Int. J. Geo-Inf. 2(4), 978–995 (2013)

    Article  Google Scholar 

  10. Berg, K.O., Wood-Dauphinee, S.L., Williams, J.I., Maki, B.: Measuring balance in the elderly: validation of an instrument. Can. J. Public Health (Revue canadienne de sante publique) 83, S7–S11 (1991)

    Google Scholar 

  11. Bloem, B.R., Visser, J.E., Allum, J.H.: Movement Disorders - Handbook of Clinical Neurophysiology. Elsevier, Amsterdam (2009)

    Google Scholar 

  12. Chessa, S., Gallicchio, C., Guzman, R., Micheli, A.: Robot localization by echo state networks using RSS. In: Bassis, S., Esposito, A., Morabito, F.C. (eds.) Recent Advances of Neural Networks Models and Applications. SIST, vol. 26, pp. 147–154. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Clark, R.A., Bryant, A.L., Pua, Y., McCrory, P., Bennell, K., Hunt, M.: Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 31(3), 307–310 (2010)

    Article  Google Scholar 

  14. Dragone, M., Amato, G., Bacciu, D., Chessa, S., Coleman, S., Di Rocco, M., Gallicchio, C., Gennaro, C., Lozano-Peiteado, H., Maguire, L., McGinnity, T., Micheli, A., OHare, G.M., Renteria, A., Saffiotti, A., Vairo, C., Vance, P.: A cognitive robotic ecology approach to self-configuring and evolving AAL systems. Eng. Appl. Artif. Intell. 45, 269–280 (2015)

    Article  Google Scholar 

  15. Gallicchio, C., Micheli, A., Barsocchi, P., Chessa, S.: User movements forecasting by reservoir computing using signal streams produced by mote-class sensors. In: Del Ser, J., Jorswieck, E.A., Miguez, J., Matinmikko, M., Palomar, D.P., Salcedo-Sanz, S., Gil-Lopez, S. (eds.) Mobilight 2011. LNICST, vol. 81, pp. 151–168. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Gallicchio, C., Micheli, A.: Architectural and Markovian factors of echo state networks. Neural Netw. 24(5), 440–456 (2011)

    Article  Google Scholar 

  17. Gallicchio, C., Micheli, A.: Tree echo state networks. Neurocomputing 101, 319–337 (2013)

    Article  Google Scholar 

  18. Gallicchio, C., Micheli, A.: A preliminary application of echo state networks to emotion recognition. In: Proceedings of EVALITA 2014, pp. 116–119 (2014)

    Google Scholar 

  19. Horak, F.B., Wrisley, D.M., Frank, J.: The balance evaluation systems test (BESTest) to differentiate balance deficits. Phys. Ther. 89(5), 484–498 (2003)

    Article  Google Scholar 

  20. Jaeger, H.: The “echo state" approach to analysing and training recurrent neural networks. Technical report, GMD - German National Research Institute for Computer Science (2001)

    Google Scholar 

  21. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  22. Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw. 20(3), 335–352 (2007)

    Article  MATH  Google Scholar 

  23. Kolen, J., Kremer, S. (eds.): A Field Guide to Dynamical Recurrent Networks. IEEE Press, New York (2001)

    Google Scholar 

  24. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  MATH  Google Scholar 

  25. Lukoševičius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. KI-Künstliche Intelligenz 26(4), 365–371 (2012)

    Article  Google Scholar 

  26. Maki, B.E., Holliday, P.J., Topper, A.K.: A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J. Gerontol. 49(2), M72–M84 (1994)

    Article  Google Scholar 

  27. Mancini, M., Horak, F.: The relevance of clinical balance assessment tools to differentiate balance deficits. Eur. J. Phys. Rehab. Med. 46(2), 239–248 (2010)

    Google Scholar 

  28. Palumbo, F., Barsocchi, P., Gallicchio, C., Chessa, S., Micheli, A.: Multisensor data fusion for activity recognition based on reservoir computing. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 24–35. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  29. Shih, C.H., Shih, C.T., Chu, C.L.: Assisting people with multiple disabilities actively correct abnormal standing posture with a Nintendo Wii Balance Board through controlling environmental stimulation. Res. Dev. Disabil. 31(4), 936–942 (2010)

    Article  Google Scholar 

  30. Simila, H., Mantyjarvi, J., Merilahti, J., Lindholm, M., Ermes, M.: Accelerometry-based Berg balance scale score estimation. IEEE J. Biomed. Health Inform. 18(4), 1114–1121 (2014)

    Article  Google Scholar 

  31. Tinetti, M.E.: Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 34(2), 119–126 (1986)

    Article  Google Scholar 

  32. Tiňo, P., Hammer, B., Bodén, M.: Markovian bias of neural-based architectures with feedback connections. In: Hammer, B., Hitzler, P. (eds.) Perspectives of Neural-Symbolic Integration, vol. 77, pp. 95–133. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  34. Visser, J.E., Carpenter, M.G., van der Kooij, H., Bloem, B.R.: The clinical utility of posturography. Clin. Neurophysiol. 119(11), 2424–2436 (2008)

    Article  Google Scholar 

  35. Wood-Dauphinee, S.L., Berg, K.O., Bravo, G.: The balance scale: responding to clinically meaningful changes. Can. J. Rehab. 10, 35–50 (1997)

    Google Scholar 

  36. Young, W., Ferguson, S., Brault, S., Craig, C.: Assessing and training standing balance in older adults: a novel approach using the Nintendo Wii Balance Board. Gait Posture 33(2), 303–305 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by a grant from DOREMI project (FP7-ICT-2013, GA no. 611650). The authors would like to acknowledge Dr. Sara Lanzisera, Dr. Cristina Laddaga (ASL5, Pisa), Dr. Andrea Bemi (Istituto Superiore di Istruzione C. Piaggia, Viareggio), Dr. Franca Giugni (CNR-IFC), Dr. Filippo Palumbo and Dr. Erina Ferro (CNR-ISTI) for their valuable inputs, support and effort during the preparation and execution of the tests. Finally, the authors would also like to acknowledge all the volunteer participants to the measurement campaign for their support and active participation in these activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Gallicchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gallicchio, C., Micheli, A., Pedrelli, L., Fortunati, L., Vozzi, F., Parodi, O. (2016). A Reservoir Computing Approach for Balance Assessment. In: Douzal-Chouakria, A., Vilar, J., Marteau, PF. (eds) Advanced Analysis and Learning on Temporal Data. AALTD 2015. Lecture Notes in Computer Science(), vol 9785. Springer, Cham. https://doi.org/10.1007/978-3-319-44412-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44412-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44411-6

  • Online ISBN: 978-3-319-44412-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics