Skip to main content

Synaptic and Extra-Synaptic NMDA Receptors in the CNS

  • Chapter
  • First Online:
The NMDA Receptors

Part of the book series: The Receptors ((REC,volume 30))

Abstract

The N-methyl d-aspartate receptor (NMDAR) is a ligand-gated ion channel that binds the neurotransmitter glutamate. It was pharmacologically identified and differentiated from other ionotropic amino-acid receptors at excitatory synapses in the late 70s for it is activated by NMDA and not kainate. Due to its large calcium conductance, it is involved in many physiological and pathological phenomena, the most notorious of which is synaptic plasticity, considered to be the molecular substrate of learning and memory. During the 40 years that followed their discovery, and owing to other unique properties such as their magnesium-block that makes them key “coincidence detectors”, NMDARs have been mostly studied at synapses. Yet, NMDARs exhibit a great number of other fundamental features that have remained unknown, underappreciated or challenging to study, and that have only become the focus of intense investigation over the past decade. These properties, such as the co-agonist-gating or the subcellular compartmentalization, greatly contribute to the functional diversity of NMDARs and will be the focus of this chapter as they are greatly relevant in the context of their physiological and pathological impact on the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biscoe TJ et al. D-alpha-aminoadipate as a selective antagonist of amino acid-induced and synaptic excitation of mammalian spinal neurones. Nature. 1977;270:743.

    Article  CAS  PubMed  Google Scholar 

  2. Davies J, Watkins JC. Actions of D and L forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res. 1982;235:378–86.

    Article  CAS  PubMed  Google Scholar 

  3. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14:383–400.

    Article  CAS  PubMed  Google Scholar 

  4. Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci. 2011;33:1351–65.

    Article  PubMed  Google Scholar 

  5. Monaghan DT, Jane DE. In: Van Dongen AM, editorBiology of the NMDA receptorBoca Raton, FL: CRC Press/Taylor & Francis; 2009.

    Google Scholar 

  6. LeMaistre JL, Sanders SA, Stobart MJ, Lu L, Knox JD, Anderson HD, Anderson CM. Coactivation of NMDA receptors by glutamate and D-serine induces dilation of isolated middle cerebral arteries. J Cereb Blood Flow Metab. 2012;32:537–47.

    Article  CAS  PubMed  Google Scholar 

  7. Stobart JL, Lu L, Anderson HD, Mori H, Anderson CM. Astrocyte-induced cortical vasodilation is mediated by D-serine and endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 2013;110:3149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ. Characterisation of the expression of NMDA receptors in human astrocytes. PLoS One. 2010;5:14123.

    Article  CAS  Google Scholar 

  9. Cao N, Yao ZX. Oligodendrocyte N-methyl-D-aspartate receptor signaling: insights into its functions. Mol Neurobiol. 2013;47:845–56.

    Article  CAS  PubMed  Google Scholar 

  10. Chen S, Diamond JS. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. J Neurosci. 2002;22:2165–73.

    CAS  PubMed  Google Scholar 

  11. Clark BA, Cull-Candy SG. Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse. J Neurosci. 2002;22:4428–36.

    CAS  PubMed  Google Scholar 

  12. Harris AZ, Pettit DL. Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. J Physiol. 2007;584:509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150:633–46.

    Article  CAS  PubMed  Google Scholar 

  14. Tovar KR, Westbrook GL. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci. 1999;19:4180–8.

    CAS  PubMed  Google Scholar 

  15. Clements JD. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 1996;19:163–71.

    Article  CAS  PubMed  Google Scholar 

  16. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11:682–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petralia RS, Wang YX, Hua F, Yi Z, Zhou A, Ge L, Stephenson FA, Wenthold RJ. Organization of NMDA receptors at extrasynaptic locations. Neuroscience. 2010;167:68–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Diamond JS. Subunit- and pathway-specific localization of NMDA receptors and scaffolding proteins at ganglion cell synapses in rat retina. J Neurosci. 2009;29:4274–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci. 2007;10:331–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kunz PA, Roberts AC, Philpot BD. Presynaptic NMDA receptor mechanisms for enhancing spontaneous neurotransmitter release. J Neurosci. 2013;33:7762–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aoki C, Rhee J, Lubin M, Dawson TM. NMDA-R1 subunit of the cerebral cortex co-localizes with neuronal nitric oxide synthase at pre- and postsynaptic sites and in spines. Brain Res. 1997;750:25–40.

    Article  CAS  PubMed  Google Scholar 

  22. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci. 2004;7:613–20.

    Article  CAS  PubMed  Google Scholar 

  23. Clark BA, Farrant M, Cull-Candy SG. A direct comparison of the single-channel properties of synaptic and extrasynaptic NMDA receptors. J Neurosci. 1997;17:107–16.

    CAS  PubMed  Google Scholar 

  24. Kharazia VN, Weinberg RJ. Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat. J Comp Neurol. 1999;412:292–302.

    Article  CAS  PubMed  Google Scholar 

  25. Momiyama A. Distinct synaptic and extrasynaptic NMDA receptors identified in dorsal horn neurones of the adult rat spinal cord. J Physiol. 2000;523:621–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petralia RS, Wang YX, Wenthold RJ. Internalization at glutamatergic synapses during development. Eur J Neurosci. 2003;18:3207–17.

    Article  PubMed  Google Scholar 

  27. Rao A, Craig AM. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron. 1997;19:801–12.

    Article  CAS  PubMed  Google Scholar 

  28. Valtschanoff JG, Burette A, Wenthold RJ, Weinberg RJ. Expression of NR2 receptor subunit in rat somatic sensory cortex: synaptic distribution and colocalization with NR1 and PSD-95. J Comp Neurol. 1999;410:599–611.

    Article  CAS  PubMed  Google Scholar 

  29. Petralia RS, Wang YX, Wenthold RJ. NMDA receptors and PSD-95 are found in attachment plaques in cerebellar granular layer glomeruli. Eur J Neurosci. 2002;15:583–7.

    Article  PubMed  Google Scholar 

  30. Fujisawa S, Aoki C. In vivo blockade of N-methyl-D-aspartate receptors induces rapid trafficking of NR2B subunits away from synapses and out of spines and terminals in adult cortex. Neuroscience. 2003;121:51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosenmund C, Feltz A, Westbrook GL. Synaptic NMDA receptor channels have a low open probability. J Neurosci. 1995;15:2788–95.

    CAS  PubMed  Google Scholar 

  32. Tao-Cheng JH, Gallant PE, Brightman MW, Dosemeci A, Reese TS. Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain. J Comp Neurol. 2007;501:731–40.

    Article  CAS  PubMed  Google Scholar 

  33. Takumi Y, Ramírez-León V, Laake P, Rinvik E, Ottersen OP. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci. 1999a;2:618–24.

    Article  CAS  PubMed  Google Scholar 

  34. Groc L, Bard L, Choquet D. Surface trafficking of N-methyl-D-aspartate receptors: physiological and pathological perspectives. Neuroscience. 2009;158:4–18.

    Article  CAS  PubMed  Google Scholar 

  35. Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L, Choquet D. NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci U S A. 2006;103:18769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tovar KR, Westbrook GL. Mobile NMDA receptors at hippocampal synapses. Neuron. 2002;34:255–64.

    Article  CAS  PubMed  Google Scholar 

  37. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976;16:1055–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Poo M. Rapid lateral diffusion of functional A Ch receptors in embryonic muscle cell membrane. Nature. 1982;295:332–4.

    Article  CAS  PubMed  Google Scholar 

  39. Triller A, Choquet D. New concepts in synaptic biology derived from single-molecule imaging. Neuron. 2008;59:359–74.

    Article  CAS  PubMed  Google Scholar 

  40. Bard L, Groc L. Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor. Mol Cell Neurosci. 2011;48:298–307.

    Article  CAS  PubMed  Google Scholar 

  41. Bard L, Sainlos M, Bouchet D, Cousins S, Mikasova L, Breillat C, Stephenson FA, Imperiali B, Choquet D, Groc L. Dynamic and specific interaction between synaptic NR2-NMDA receptor and PDZ proteins. Proc Natl Acad Sci U S A. 2010;107:19561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoshii A, Sheng MH, Constantine-Paton M. Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons. Proc Natl Acad Sci U S A. 2003;100:1334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sans N, Petralia RS, Wang YX, Blahos II J, Hell JW, Wenthold RJ. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J Neurosci. 2000;20:1260–71.

    CAS  PubMed  Google Scholar 

  44. van Zundert B, Yoshii A, Constantine-Paton M. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci. 2004;27:428–37.

    Article  PubMed  Google Scholar 

  45. Valtschanoff JG, Weinberg RJ. J Neurosci. 2001;21:1211–7.

    CAS  PubMed  Google Scholar 

  46. Pérez-Otaño I, Ehlers MD. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci. 2005;28:229–38.

    Article  PubMed  CAS  Google Scholar 

  47. Steigerwald F, Schulz TW, Schenker LT, Kennedy MB, Seeburg PH, Köhr G. C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J Neurosci. 2000;20:4573–81.

    CAS  PubMed  Google Scholar 

  48. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol. 1994;347:150–60.

    Article  CAS  PubMed  Google Scholar 

  49. Laurie DJ, Seeburg PH. Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci. 1994;14:3180–94.

    CAS  PubMed  Google Scholar 

  50. Barria A, Malinow R. Subunit-specific NMDA receptor trafficking to synapses. Neuron. 2002;35:345–53.

    Article  CAS  PubMed  Google Scholar 

  51. Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci. 2011;48:308–20.

    Article  CAS  PubMed  Google Scholar 

  52. Thomazeau A, Lassalle O, Iafrati J, Souchet B, Guedj F, Janel N, Chavis P, Delabar J, Manzoni OJ. Prefrontal deficits in a murine model overexpressing the down syndrome candidate gene dyrk1a. J Neurosci. 2014;34:1138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hildebrand ME, Pitcher GM, Harding EK, Li H, Beggs S, Salter MW. GluN2B and GluN2D NMDARs dominate synaptic responses in the adult spinal cord. Sci Rep. 2014;4:4094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lee MC, Yasuda R, Ehlers MD. Metaplasticity at single glutamatergic synapses. Neuron. 2010;66:859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamilton NB, Attwell D. Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci. 2010;11:227–38.

    Article  CAS  PubMed  Google Scholar 

  56. Morland C, Nordengen K, Larsson M, Prolo LM, Farzampour Z, Reimer RJ, Gundersen V. Vesicular uptake and exocytosis of L-aspartate is independent of sialin. FASEB J. 2013;27:1264–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miyaji T, Echigo N, Hiasa M, Senoh S, Omote H, Moriyama Y. Identification of a vesicular aspartate transporter. Proc Natl Acad Sci U S A. 2008;105:11720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miyaji T, Omote H, Moriyama Y. Functional characterization of vesicular excitatory amino acid transport by human sialin. J Neurochem. 2011;119:1–5.

    Article  CAS  PubMed  Google Scholar 

  59. Herring BE, Silm K, Edwards RH, Nicoll RA. Is Aspartate an Excitatory Neurotransmitter? J Neurosci. 2015;35:10168–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reimer RJ, Edwards RH. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch. 2004;447:629–35.

    Article  CAS  PubMed  Google Scholar 

  61. Sah P, Hestrin S, Nicoll RA. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science. 1989;246:815–8.

    Article  CAS  PubMed  Google Scholar 

  62. Cavelier P, Attwell D. Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol. 2005;564:397–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Herman MA, Jahr CE. Extracellular glutamate concentration in hippocampal slice. J Neurosci. 2007;27:9736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Le Meur K, Galante M, Angulo MC, Audinat E. Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. J Physiol. 2007;580:373–83.

    Article  CAS  PubMed  Google Scholar 

  65. Fleming TM, Scott V, Naskar K, Joe N, Brown CH, Stern JE. State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons. J Physiol. 2011;589:3929–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Povysheva NV, Johnson JW. Tonic NMDA receptor-mediated current in prefrontal cortical pyramidal cells and fast-spiking interneurons. J Neurophysiol. 2012;107:2232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Angulo MC, Kozlov AS, Charpak S, Audinat E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci. 2004;24:6920–7.

    Article  CAS  PubMed  Google Scholar 

  68. Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron. 2004;43:729–43.

    Article  CAS  PubMed  Google Scholar 

  69. Shigetomi E, Bowser DN, Sofroniew MV, Khakh BS. Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci. 2008;28:6659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nie H, Zhang H, Weng HR. Bidirectional neuron-glia interactions triggered by deficiency of glutamate uptake at spinal sensory synapses. J Neurophysiol. 2010;104:713–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bergersen LH, Gundersen V. Morphological evidence for vesicular glutamate release from astrocytes. Neuroscience. 2009;158:260–5.

    Article  CAS  PubMed  Google Scholar 

  72. Bergersen LH, Morland C, Ormel L, Rinholm JE, Larsson M, Wold JF, Røe AT, Stranna A, Santello M, Bouvier D, et al. Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex. 2012;22:1690–7.

    Article  CAS  PubMed  Google Scholar 

  73. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325:529–31.

    Article  CAS  PubMed  Google Scholar 

  74. Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988;241:835–7.

    Article  CAS  PubMed  Google Scholar 

  75. Hashimoto A, Nishikawa T, Oka T, Takahashi K, Hayashi T. Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-L-cysteine and o-phthaldialdehyde. J Chromatogr. 1992;582:41–8.

    Article  CAS  PubMed  Google Scholar 

  76. Hashimoto A, Oka T, Nishikawa T. Anatomical distribution and postnatal changes in endogenous free D-aspartate and D-serine in rat brain and periphery. Eur J Neurosci. 1995;7:1657–63.

    Article  CAS  PubMed  Google Scholar 

  77. Hashimoto A, Oka T. Free D-aspartate and D-serine in the mammalian brain and periphery. Prog Neurobiol. 1997;52:325–53.

    Article  CAS  PubMed  Google Scholar 

  78. Schell MJ, Molliver ME, Snyder SH. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A. 1995;92:3948–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell. 2006;125:775–84.

    Article  CAS  PubMed  Google Scholar 

  80. Papouin T, Oliet SH. Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ahmadi S, Muth-Selbach U, Lauterbach A, Lipfert P, Neuhuber WL, Zeilhofer HU. Facilitation of spinal NMDA receptor currents by spillover of synaptically released glycine. Science. 2003;300:2094–7.

    Article  CAS  PubMed  Google Scholar 

  82. Kalbaugh TL, Zhang J, Diamond JS. Coagonist release modulates NMDA receptor subtype contributions at synaptic inputs to retinal ganglion cells. J Neurosci. 2009;29:1469–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Flint AC, Liu X, Kriegstein AR. Nonsynaptic glycine receptor activation during early neocortical development. Neuron. 1998;20:43–53.

    Article  CAS  PubMed  Google Scholar 

  84. Ito S, Cherubini E. Strychnine-sensitive glycine responses of neonatal rat hippocampal neurones. J Physiol. 1991;440:67–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu TL, Gong N. Glycine and glycine receptor signaling in hippocampal neurons: diversity, function and regulation. Prog Neurobiol. 2010;91:349–61.

    Article  CAS  PubMed  Google Scholar 

  86. Chattipakorn SC, McMahon LL. Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices. J Neurophysiol. 2002;87:1515–25.

    CAS  PubMed  Google Scholar 

  87. Chattipakorn SC, McMahon LL. Strychnine-sensitive glycine receptors depress hyperexcitability in rat dentate gyrus. J Neurophysiol. 2003;89:1339–42.

    Article  CAS  PubMed  Google Scholar 

  88. Horio M, Kohno M, Fujita Y, Ishima T, Inoue R, Mori H, Hashimoto K. Levels of D-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int. 2011;59:853–9.

    Article  CAS  PubMed  Google Scholar 

  89. Yamamoto S, Morinobu S, Iwamoto Y, Ueda Y, Takei S, Fujita Y, Yamawaki S. Alterations in the hippocampal glycinergic system in an animal model of posttraumatic stress disorder. J Psychiatr Res. 2010;44:1069–74.

    Article  PubMed  Google Scholar 

  90. Holecek M, Kovarik M. Alterations in protein metabolism and amino acid concentrations in rats fed by a high-protein (casein-enriched) diet—effect of starvation. Food Chem Toxicol. 2011;49:3336–42.

    Article  CAS  PubMed  Google Scholar 

  91. Okamoto M, Akanuma S, Tachikawa M, Hosoya K. Characteristics of glycine transport across the inner blood-retinal barrier. Neurochem Int. 2009;55:789–95.

    Article  CAS  PubMed  Google Scholar 

  92. Zafra F, Aragón C, Olivares L, Danbolt NC, Giménez C, Storm-Mathisen J. Glycine transporters are differentially expressed among CNS cells. J Neurosci. 1995;15:3952–69.

    CAS  PubMed  Google Scholar 

  93. Verleysdonk S, Martin H, Willker W, Leibfritz D, Hamprecht B. Rapid uptake and degradation of glycine by astroglial cells in culture: synthesis and release of serine and lactate. Glia. 1999;27:239–48.

    Article  CAS  PubMed  Google Scholar 

  94. Song W, Chattipakorn SC, McMahon LL. Glycine-gated chloride channels depress synaptic transmission in rat hippocampus. J Neurophysiol. 2006;95:2366–79.

    Article  CAS  PubMed  Google Scholar 

  95. Jonas P, Bischofberger J, Sandkühler J. Corelease of two fast neurotransmitters at a central synapse. Science. 1998;281:419–24.

    Article  CAS  PubMed  Google Scholar 

  96. O’Brien JA, Berger AJ. Cotransmission of GABA and glycine to brain stem motoneurons. J Neurophysiol. 1999;82:1638–41.

    PubMed  Google Scholar 

  97. Gielen M, Siegler Retchless B, Mony L, Johnson JW, Paoletti P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 2009;459:703–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vergnano AM, Rebola N, Savtchenko LP, Pinheiro PS, Casado M, Kieffer BL, Rusakov DA, Mulle C, Paoletti P. Zinc dynamics and action at excitatory synapses. Neuron. 2014;82:1101–14.

    Article  CAS  PubMed  Google Scholar 

  99. Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol. 2007;7:39–47.

    Article  CAS  PubMed  Google Scholar 

  100. Neyton J, Paoletti P. Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci. 2006;26:1331–3.

    Article  CAS  PubMed  Google Scholar 

  101. Isaacson JS, Murphy GJ. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca(2+)-activated K+ channels. Neuron. 2001;31:1027–34.

    Article  CAS  PubMed  Google Scholar 

  102. Oikonomou KD, Short SM, Rich MT, Antic SD. Extrasynaptic glutamate receptor activation as cellular bases for dynamic range compression in pyramidal neurons. Front Physiol. 2012;3:334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 2004;304:1021–4.

    Article  CAS  PubMed  Google Scholar 

  104. Barria A, Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron. 2005;48:289–301.

    Article  CAS  PubMed  Google Scholar 

  105. Duffy S, Labrie V, Roder JC. D-serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learning. Neuropsychopharmacology. 2008;33:1004–18.

    Article  CAS  PubMed  Google Scholar 

  106. Morishita W, Lu W, Smith GB, Nicoll RA, Bear MF, Malenka RC. Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology. 2007;52:71–6.

    Article  CAS  PubMed  Google Scholar 

  107. Zhao JP, Constantine-Paton M. NR2A-/- mice lack long-term potentiation but retain NMDA receptor and L-type Ca2+ channel-dependent long-term depression in the juvenile superior colliculus. J Neurosci. 2007;27:13649–54.

    Article  CAS  PubMed  Google Scholar 

  108. Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir ZI. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci. 2004;24:7821–8.

    Article  CAS  PubMed  Google Scholar 

  109. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, Wang YT. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci. 2007;27:2846–57.

    Article  CAS  PubMed  Google Scholar 

  110. Xu J, Kurup P, Zhang Y, Goebel-Goody SM, Wu PH, Hawasli AH, Baum ML, Bibb JA, Lombroso PJ. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci. 2009;29:9330–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969;164:719–21.

    Article  CAS  PubMed  Google Scholar 

  112. Lucas D, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol. 1957;58:193–201.

    Article  CAS  PubMed  Google Scholar 

  113. Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture:attenuation by NMDA antagonists. J Neurosci. 1988;8:185–96.

    CAS  PubMed  Google Scholar 

  114. Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cellculture. J Neurosci. 1987;7:357–68.

    CAS  PubMed  Google Scholar 

  115. Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci. 1987;7:369–79.

    CAS  PubMed  Google Scholar 

  116. Wroge CM, Hogins J, Eisenman L, Mennerick S. Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci. 2012;32:6732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, Dziewczapolski G, Nakamura T, Cao G, Pratt AE, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A. 2013;110:2518–27.

    Article  Google Scholar 

  118. Zhou X, Ding Q, Chen Z, Yun H, Wang H. Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity. J Biol Chem. 2013;288:24151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou X, Hollern D, Liao J, Andrechek E, Wang H. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis. 2013;4:560.

    Article  CAS  Google Scholar 

  120. Katsuki H, Nonaka M, Shirakawa H, Kume T, Akaike A. Endogenous D-serine is involved in induction of neuronal death by N-methyl-D-aspartate and simulated ischemia in rat cerebrocortical slices. J Pharmacol Exp Ther. 2004;311:836–44.

    Article  CAS  PubMed  Google Scholar 

  121. Sattler R, Xiong Z, Lu WY, MacDonald JF, Tymianski M. Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J Neurosci. 2000;20:22–33.

    CAS  PubMed  Google Scholar 

  122. Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P, Canu N. NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci U S A. 2006;103:2892–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shleper M, Kartvelishvily E, Wolosker H. D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci. 2005;25:9413–7.

    Article  CAS  PubMed  Google Scholar 

  124. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci. 2002;5:405–14.

    CAS  PubMed  Google Scholar 

  125. Emnett CM, Eisenman LN, Taylor AM, Izumi Y, Zorumski CF, Mennerick S. Indistinguishable synaptic pharmacodynamics of the N-methyl-D-aspartate receptor channel blockers memantine and ketamine. Mol Pharmacol. 2013;84:935–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xia P, Chen HS, Zhang D, Lipton SA. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci. 2010;30:11246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ditzler K. Efficacy and tolerability of memantine in patients with dementia syndrome. A double-blind, placebo controlled trial. Arzneimittelforschung. 1991;41:773–80.

    CAS  PubMed  Google Scholar 

  128. Lipton SA. The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res. 2005;2:155–65.

    Article  CAS  PubMed  Google Scholar 

  129. Pál B. Astrocytic actions on extrasynaptic neuronal currents. Front Cell Neurosci. 2015;9:474.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wu YW, Grebenyuk S, McHugh TJ, Rusakov DA, Semyanov A. Backpropagating action potentials enable detection of extrasynaptic glutamate by NMDA receptors. Cell Rep. 2012;1:495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Riebe I, Seth H, Culley G, Dósa Z, Radi S, Strand K, Fröjd V, Hanse E. Tonically active NMDA receptors—a signalling mechanism critical for interneuronal excitability in the CA1 stratum radiatum. Eur J Neurosci. 2016;43:169–78.

    Article  PubMed  Google Scholar 

  132. Ortinski PI, Turner JR, Pierce RC. Extrasynaptic targeting of NMDA receptors following D1 dopamine receptor activation and cocaine self-administration. J Neurosci. 2013;33:9451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane H. R. Oliet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Papouin, T., Oliet, S.H.R. (2017). Synaptic and Extra-Synaptic NMDA Receptors in the CNS. In: Hashimoto, K. (eds) The NMDA Receptors. The Receptors, vol 30. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49795-2_2

Download citation

Publish with us

Policies and ethics