Skip to main content

Trivalent Lanthanides in Tellurite Glass

  • Chapter
  • First Online:
  • 772 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 254))

Abstract

Trivalent lanthanides, also called rare-earth ions (REIs), show light emissions in almost all the near infrared and visible spectrum. Such luminescent properties are often related to potential applications in a variety of fields since sharp emission lines, meta-stable states, the ability of converting long/short-wavelengths (up/down-conversion process), energy transfer processes (resonant and non-resonant) and high quantum efficiency make them appropriate for the manufacture of many optical devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Sugar, Phys. Rev. Lett. 14, 731 (1965)

    Article  ADS  Google Scholar 

  2. J.F. Kielkopf, H.M. Crosswhite, J. Opt. Soc. Am. 60, 347 (1970)

    Article  ADS  Google Scholar 

  3. H.M. Crosswhite, H.W. Moos, Conf Opt Prop Ions in Crys (Wiley, New York, 1967)

    Google Scholar 

  4. B.R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill, New York, 1963)

    Google Scholar 

  5. R.C. Powell, Symmetry, Group Theory and the Physical Properties of Crystals (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  6. J.J. Sakurai, Modern Quantum Mechanics (Addison Wesley, Boston, 1994). isbn:ISBN 0-201-53929-2

    Google Scholar 

  7. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princenton, NJ, 1960)

    MATH  Google Scholar 

  8. C.W. Nielson, G.F. Koster, Spectroscopic Coefficients for pn, dn, and fn Configurations (MIT Press, Cambridge, MA, 1964)

    Google Scholar 

  9. G.H. Dieke, Spectra and Energy Levels of Rare-Earth Ions in Crystals (Wiley, New York, 1968)

    Google Scholar 

  10. J.H. van Vleck, J. Phys. Chem. 41, 67 (1937)

    Article  Google Scholar 

  11. A.J. Freeman, R.E. Watson, Phys. Rev. 127, 2058 (1962)

    Article  ADS  Google Scholar 

  12. V.A.G. Rivera, F.A. Ferri, E. Marega Jr., in Plasmonics - Principles and Applications, ed. by K. Y. Kim. Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions (InTech, Croatia, 2012). doi:10.5772/50753

    Google Scholar 

  13. S. Hufner, Optical Spectra or Transparent Rare Earth Compounds (Academic Press, London, 1978)

    Google Scholar 

  14. G. Liu, B. Jacquier (eds.), Spectroscopic Properties of Rare Earths in Optical Materials (Springer, Berlin, 2005)

    Google Scholar 

  15. O.L. Malta, S.J.L. Ribeiro, M. Faucher, P. Porcher, Theoretical intensities of 4f-4f transitions between stark levels of the Eu3+ ion in crystals. J. Phys. Chem. Solids 52, 587–593 (1991)

    Article  ADS  Google Scholar 

  16. G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience Publishers, New York, 1968)

    Google Scholar 

  17. B.M. Walsh, Advances in Spectroscopy for Lasers and Sensing, ed. by B Di Bartolo and O. Forte (Springer, Berlin, 2006)

    Google Scholar 

  18. X. Chen, L. Liu, G. Liu, J. Nanosci. Nanotechnol. 8, 1126 (2008)

    Google Scholar 

  19. W. Demtrder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd edn. (Springer, New Delhi, India, 2004)

    Google Scholar 

  20. G. Rajan (ed.), Optical Fiber Sensors: Advanced Techniques and Applications (CRC Press, Boca Raton, 2015)

    Google Scholar 

  21. S. W. Harun, H. Arof (eds.), Current Developments in Optical Fiber Technology (InTech, Croatia, 2013). isbn:ISBN 978–953–51-1148-1

    Google Scholar 

  22. P.J. Mears, L. Reekie, I.M. Jauncey, D.N. Payne, Electron. Lett. 23, 1026 (1987)

    Article  Google Scholar 

  23. E. Desurvire, R.J. Simpson, P.C. Becker, Opt. Lett. 12, 888 (1987)

    Article  ADS  Google Scholar 

  24. M. Dejneka, B. Samson, MRS Bull. 24, 39 (1999)

    Article  Google Scholar 

  25. E. Desurvire, The golden age of optical fiber amplifiers. Phys. Today 47, 20–27 (1994)

    Article  ADS  Google Scholar 

  26. E. Desurvire, Erbium-Doped Fiber Amplifier (John Wiley, New York, 1994)

    Google Scholar 

  27. S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997)

    Google Scholar 

  28. M.J.F. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993)

    Google Scholar 

  29. V. Kokorina, Glasses for Infrared Optics (CRC Press, Boca Raton, FL, 1996)

    Google Scholar 

  30. M. Yamane, Y. Asahara, Glasses for Photonics (Cambridge University Press, Cambridge, 2000.) ISBN 0521580536

    Book  Google Scholar 

  31. J.S. Wang, E.M. Vogel, E. Snitzer, Tellurite glass: a new candidate for fiber devices. Opt. Mater. 3, 187–203 (1994)

    Article  ADS  Google Scholar 

  32. M. Shubert, B. Wilhelmi, Nonlinear Optics and Quantum Electronics (Wiley, New York, 1986)

    Google Scholar 

  33. V.A.G. Rivera, Y. Ledemi, M. Pereira-da-Silva, Y. Messaddeq, E. Marega Jr., Sci. Rep. 6, 18464 (2016)

    Article  ADS  Google Scholar 

  34. A. Mori, Tellurite-based fibers and their applications to optical communication networks. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/J Cera Soc Jpn 116, 1040–1051 (2008)

    Article  Google Scholar 

  35. R. Morea, J. Fernandez, R. Balda, J. Gonzalo, Pulsed laser deposition of rare-earth-doped glasses: a step toward lightwave circuits. Proc. SPIE 9744, 974402 (2016)

    Article  Google Scholar 

  36. V.A.G. Rivera, D. Manzani, Y. Messaddeq, L.A.O. Nunes, E. Marega Jr., Study of Er3+ fluorescence on tellurite glasses containing Ag nanoparticles. J. Phys. Conf. Ser. 274, 12123 (2011)

    Article  Google Scholar 

  37. R. El-Mallawanya, Amitava Patraa, Christopher S. Frienda, R. Kapoora, P.N. Prasad, Study of luminescence properties of Er3+-ions in new tellurite glasses, Opt. Mat. 26, 267–270 (2004)

    Google Scholar 

  38. V.A.G. Rivera, L.C. Barbosa, Spectroscopic properties of Er3+-doped sodium-modified tellurite glasses for use as optical amplifiers at 1540 nm. J. Lumin. 156, 116–123 (2014)

    Article  Google Scholar 

  39. R. Rolli, K. Gatterer, M. Wachtier, M. Bettinelli, A. Speghini, D. Ajò, Optical spectroscopy of lanthanide ions in ZnO-TeO2 glasses. Spectrochimica Acta-Part A: Mol Bio Spect 57, 2009–2017 (2001)

    Article  ADS  Google Scholar 

  40. Y. Lu, M. Cai, R. Cao, Y. Tian, F. Huang, S. Xu, J. Zhang, Enhanced effect of Er3+ ions on 2.0 and 2.85 μm emission of Ho3+/Yb3+ doped germanate-tellurite glass. Opt. Mat. 60, 252–257 (2016)

    Article  Google Scholar 

  41. A. Mori, Y. Ohishi, S. Sudo, Erbium-doped tellurite glass fibre laser and amplifier. Electron. Lett. 33, 863–864 (1997)

    Article  Google Scholar 

  42. E. Snitzer, E.M. Vogel, J.-S. Wang, U.S. Patent 5251062 A, Tellurite glass and fiber amplifier, Bell Communications Research, Inc.

    Google Scholar 

  43. V.V. Ravi Kanth Kumar, A.K. George, J.C. Knight, P.S.J. Russell, Tellurite photonic crystal fiber. Opt. Express 11, 2641–2645 (2003)

    Article  ADS  Google Scholar 

  44. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, J. Lousteau, Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Progr. Mater. Sci. 57, 1426–1491 (2012)

    Article  Google Scholar 

  45. L. Huang, A. Jha, S. Shen, X. Liu, Broadband emission in Er3+-Tm3+ codoped tellurite fibre. Opt. Express 12, 2429–2434 (2004)

    Article  ADS  Google Scholar 

  46. H. Ebendorff-Heidepriem, K. Kuan, M.R. Oermann, K. Knight, T.M. Monro, Extruded tellurite glass and fibers with low OH content for mid-infrared applications. Opt. Mat. Express 2(432) (2012)

    Google Scholar 

  47. N. Mott, Electrons in Glass, Nobel Lecture (Cavendish Laboratory, Cambridge, England, 1977)

    Google Scholar 

  48. R.A.H. El-Mallawany, Tellurite Glasses Hand Book-Physical Properties and Data (CRC Press, Boca Raton, FL, 2002)

    MATH  Google Scholar 

  49. C.E. Chryssou, F. Di Pasquale, C.W. Pitt, IEEE J. Selec. Topics Quantum Electron. 6, 114 (2000)

    Article  Google Scholar 

  50. A.P. Lopez-Barbero, W.A. Arellano-Espinoza, H.L. Fragnito, H.E. Hernandez-Figueroa, Micro-wave Opt. Tech. Lett. 25, 103 (2000)

    Google Scholar 

  51. V.A.G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, E. Marega, Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses. J. Lumin. 145, 787–792 (2014)

    Article  Google Scholar 

  52. C.E. Chryssou, Opt. Commun. 184, 375 (2000)

    Article  ADS  Google Scholar 

  53. V.A.G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, E. Marega, Control of the radiative properties via photon-plasmon interaction in Er3+-Tm3+-codoped tellurite glasses in the near infrared region. Opt. Exp. 22, 21122–21136 (2014)

    Article  ADS  Google Scholar 

  54. V.A.G. Rivera, E.F. Chillcce, E. Rodriguez, C.L. Cesar, L.C. Barbosa, Planar waveguides by ion exchange in Er3+-doped tellurite glass. J. Non-Cryst. Solids 352, 363–367 (2006)

    Article  ADS  Google Scholar 

  55. S. Marjanovic, J. Toulouse, H. Jain, C. Sandmann, V. Dierolf, A.R. Kortan, N. Kopylov, R.G. Ahrens, Characterization of new erbium-doped tellurite glasses and fibers. J. Non-Cryst. Solids 322, 311–318 (2003)

    Article  ADS  Google Scholar 

  56. V.A.G. Rivera, E. Rodriguez, E.F. Chillcce, C.L. Cesar, L.C. Barbosa, Waveguide produced by fiber on glass method using Er3+-doped tellurite glass. J. Non-Crys. Solids 353, 339–343 (2007)

    Article  ADS  Google Scholar 

  57. S. Tanabe, in: Shibin Jiang (ed.), Rare-earth doped materials and devices V, Proc. SPIE, 4282, 85 (2001)

    Google Scholar 

  58. W. Miniscalco, IEEE J. Lightwave Technol. 9, 234 (1991)

    Article  ADS  Google Scholar 

  59. P. Hagenmuller (ed.), Inorganic Solid Fluorides, Chemistry and Physics (Academic Press, New York, 1985)

    Google Scholar 

  60. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736 (1996)

    Article  ADS  Google Scholar 

  61. G.H. Beall, L.R. Pinckney, Nanophase glass-ceramics. J. Am. Ceramic Soc. 82, 5–16 (1999)

    Article  Google Scholar 

  62. J. Wasylak, K. Ozga, I.V. Kityk, J. Kucharski, IR optical limiting in europium and thulium doped oxide glasses. Infrared Phys. Technol. 45, 253–263 (2004)

    Article  ADS  Google Scholar 

  63. E. Snoeks, P.J. Kik, A. Polman, Opt. Mater. 5, 159 (1996)

    Article  ADS  Google Scholar 

  64. R. El-Mallawany, Tellurite Glasses Handbook—Physical Properties and Data (CRC Press, London, 2001)

    Book  MATH  Google Scholar 

  65. A. Narazaki, K. Tanaka, K. Hirao, N. Soga, J. Appl. Phys. 85, 2046 (1999)

    Article  ADS  Google Scholar 

  66. A. Narazaki, K. Tanaka, K. Hirao, N. Soga, Effect of poling temperature on optical second-harmonic intensity of lithium sodium tellurite glass. J. Am. Ceram. Soc. 81(2735–2737) (1998)

    Google Scholar 

  67. K. Damak, E.S. Yousef, C. Rüssel, R. Maâlej, White light generation from Dy3+ doped tellurite glass. J. Quant. Spectrosc. Radiat. Transf. 134(55–63) (2014)

    Google Scholar 

  68. N.K. Giri, D.K. Rai, S.B. Raia, White light upconversion emissions from Tm3+-Ho3+-Yb3+ codoped tellurite and germanate glasses on excitation with 798 nm radiation. J. Appl. Phys. 104, 113107 (2008)

    Article  ADS  Google Scholar 

  69. T. Forster, Ann. Phys. 2, 55 (1948)

    Article  Google Scholar 

  70. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    Article  ADS  Google Scholar 

  71. H.T. Amorim, M.V.D. Vermelho, A.S. Gouveia-Neto, F.C. Cassanjes, S.J.L. Ribeiro, Y. Messaddeq, Red–green–blue upconversion emission and energy-transfer between Tm3+ and Er3+ ions in tellurite glasses excited at 1.064 μm. J. Sol. State Chem. 171, 278–281 (2003)

    Article  ADS  Google Scholar 

  72. V.A.G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, E. Marega, Green-to-red light tuning by up-conversion emission via energy transfer in Er3+–Tm3+-codoped germanium–tellurite glasses. J. Non-Cryst. Solids 392, 45–50 (2014)

    Article  ADS  Google Scholar 

  73. N. Rakov, G.S. Maciel, M.L. Sundheimer, L. De, A.S.L. Gomes, Y. Messaddeq, F.C. Cassanjes, G. Poirier, S.J.L. Ribeiro, Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions. J. Appl. Physiol. 92, 6337–6339 (2002)

    Article  ADS  Google Scholar 

  74. V.A.G. Rivera, O.B. Silva, Y. Ledemi, Y. Messaddeq, E. Marega Jr., Collective Plasmon-Modes in Gain Media: Quantum Emitters and Plasmonics Nanostructures, Springer Brief in Physics (Springer International Publishing, Cham, 2015). doi:10.1007/978-3-319-09525-7

    Book  Google Scholar 

  75. B. Huang, Y. Zhou, F. Yang, L. Wu, Y. Qi, J. Li, The 1.53 μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles. Opt. Mat. 51, 9–17 (2016)

    Article  Google Scholar 

  76. X. Zhou, J. Shen, Y. Wang, Z. Feng, R. Wang, L. Li, S. Jiang, X. Luo, An efficient dual-mode solar spectral modification for c-si solar cells in Tm3+/Yb3+ Codoped Tellurite Glasses. J. Amer. Soc. Cer. Soc. 99, 2300–2305 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Brazilian agencies FAPESP, CNPq and CEPOF/INOF. V.A.G. Rivera extends thanks FAPESP for financial support (project 2009/08978-4 and 2011/21293-0) that allowed my post-doctoral and my gratitude to Dr. Luiz Antonio Nunes of the Instituto de Física de São Carlos—University São Paulo—Brazil and the Dr. Yannick Ledemi and the Dr. Younnes Messaddeq of the Centre d’Optique, Photonique et laser—University Laval- Canada for the discussions on this issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. G. Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rivera, V.A.G., Nunes, L.A.O. (2017). Trivalent Lanthanides in Tellurite Glass. In: Rivera, V., Manzani, D. (eds) Technological Advances in Tellurite Glasses. Springer Series in Materials Science, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-319-53038-3_3

Download citation

Publish with us

Policies and ethics