Skip to main content

Surface Acoustic Wave Propagation Using Crawling Waves Technique in High Frequency Ultrasound

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 27))

Abstract

Several tropical diseases generate cutaneous lesions on the skin with different elastic properties than normal tissue. A number of non-invasive elastography techniques have been created for detecting the mechanical properties in tissue in the last decades. Quantitative information is mainly obtained by harmonic elastography, which is distinguished for producing shear wave propagation. When wave propagation is near a boundary region, surface acoustic waves (SAW) are found. This work presents crawling waves elastography technique implemented with a high-frequency ultrasound (HFUS) system for the estimation of SAW speed and its relationship with the elastic modulus. Experiments are conducted to measure SAW speed in a homogeneous phantom with a solid-water interface for a theoretical validation. Afterwards, ex-vivo experiments in thigh pork were performed to show SAW propagation in animal tissue. Preliminary results demonstrate the presence of SAW propagation in phantoms and skin tissue and how wave speed should be correctly adjusted according to the coupling media for elastography applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pan American Health Organization: Cutaneous leishmaniasis (2016)

    Google Scholar 

  2. Machet, L., et al.: High Resolution Ultrasound Imaging of Melanocytic and Other Pigmented Lesions of the Skin. INTECH Open Access Publisher, Croatia (2011)

    Google Scholar 

  3. Wortsman, X., Wortsman, J.: Clinical usefulness of variable frequency ultrasound in localized lesions of the skin. J. Am. Acad. Dermatol. 62(2), 247–256 (2010)

    Article  Google Scholar 

  4. Nakajima, M., Kiyohara, Y., Shimizu, M., Kobayashi, M.: Clinical application of real-time tissue elastography on skin lesions. MEDIX Suppl., 36–39 (2007)

    Google Scholar 

  5. Evans, A., Whelehan, P., Thomson, K., McLean, D., Brauer, K., Purdie, C., Thompson, A.: Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res. 12(6), R104 (2010)

    Article  Google Scholar 

  6. Frulio, N., Trillaud, H.: Ultrasound elastography in liver. Diagn. Interv. Imaging 94(5), 515–534 (2013)

    Article  Google Scholar 

  7. Souchon, R., Rouvire, O., Gelet, A., Detti, V., Srinivasan, S., Ophir, J., Chapelon, J.Y.: Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results. Ultrasound Med. Biol. 29(7), 1007–1015 (2003)

    Article  Google Scholar 

  8. Wu, Z.: Shear wave interferometry and holography, an application of sonoelastography. Ph.D. thesis, University of Rochester (2005)

    Google Scholar 

  9. Li, C., Guan, G., Huang, Z., Wang, R.K., Nabi, G.: Full skin quantitative optical coherence elastography achieved by combining vibration and surface acoustic wave methods. In: SPIE BiOS. International Society for Optics and Photonics, p. 93220O (2015)

    Google Scholar 

  10. Li, C., Guan, G., Reif, R., Huang, Z., Wang, R.K.: Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. J. R. Soc. Interface 9(70), 831–841 (2012)

    Article  Google Scholar 

  11. Meemon, P., Yao, J., Chu, Y.J., Zvietcovich, F., Parker, K.J., Rolland, J.P.: Crawling wave optical coherence elastography. Opt. Lett. 41(5), 847–850 (2016)

    Article  Google Scholar 

  12. Zvietcovich, F., Rolland, J.P., Yao, J., Meemon, P., Parker, K.J.: Comparative study of shear wave-based elastography techniques in optical coherence tomography. J. Biomed. Opt. 22(3), 035010 (2017)

    Article  Google Scholar 

  13. Zvietcovich, F., Yao, J., Rolland, J.P., Parker, K.J.: Experimental classification of surface waves in optical coherence elastography. In: SPIE BiOS. International Society for Optics and Photonics, p. 97100Z (2016)

    Google Scholar 

  14. Foti, S.: Multistation methods for geotechnical characterization using surface waves. Ph.D. thesis, Politecnico di Torino (2000)

    Google Scholar 

  15. Viktorov, I.A.: Rayleigh and Lamb Waves: Physical Theory and Applications. Plenum press, New York (1967)

    Book  Google Scholar 

  16. Zhang, X., Greenleaf, J.F.: Estimation of tissues elasticity with surface wave speed. J. Acoust. Soc. Am. 122(5), 2522–2525 (2007)

    Article  Google Scholar 

  17. Avon, S.L., Wood, R.E.: Porcine skin as an porcine skin as an in-vivo model for model for ageing of human bite marks. J. Forensic Odontostomatol. 23, 30–39 (2005)

    Google Scholar 

  18. Nenadic, I.Z., Urban, M.W., Bernal, M., Greenleaf, J.F.: Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L). J. Acoust. Soc. Am. 130(6), 3549–3552 (2011)

    Article  Google Scholar 

  19. Partin, A., Hah, Z., Barry, C.T., Rubens, D.J., Parker, K.J.: Elasticity estimates from images of crawling waves generated by miniature surface sources. Ultrasound Med. Biol. 40(4), 685–694 (2014)

    Article  Google Scholar 

  20. Zhang, M., Castaneda, B., Wu, Z., Nigwekar, P., Joseph, J.V., Rubens, D.J., Parker, K.J.: Congruence of imaging estimators and mechanical measurements of viscoelastic properties of soft tissues. Ultrasound Med. Biol. 33(10), 1617–1631 (2007)

    Article  Google Scholar 

  21. Nenadic, I., Urban, M.W., Mitchell, S.A., Greenleaf, J.F.: Lamb wave shearwave dispersion ultrasound Vibrometry (SDUV) validation study. In: 2010 Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 45–48. IEEE (2010)

    Google Scholar 

  22. Mercado, K.P., Langdon, J., Helguera, M., McAleavey, S.A., Hocking, D.C., Dalecki, D.: Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues. J. Acoust. Soc. Am. 138(2), EL138–EL144 (2015)

    Article  Google Scholar 

  23. Hoyt, K., Castaneda, B., Parker, K.J.: 5C–6 muscle tissue characterization using quantitative sonoelastography: preliminary results. In: Ultrasonics Symposium, 2007, pp. 365–368. IEEE (2007)

    Google Scholar 

Download references

Acknowledgements

This study was supported by InnovatePerú/FINCYT through the grant PIAP-3-P-872-14 and the Peruvian Grant from Cienciactiva 071-2016-FONDECYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cecilia Saavedra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Saavedra, A.C., Zvietcovich, F., Castaneda, B. (2018). Surface Acoustic Wave Propagation Using Crawling Waves Technique in High Frequency Ultrasound. In: Tavares, J., Natal Jorge, R. (eds) VipIMAGE 2017. ECCOMAS 2017. Lecture Notes in Computational Vision and Biomechanics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-68195-5_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68195-5_83

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68194-8

  • Online ISBN: 978-3-319-68195-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics